Reaction Network of Ammonium Perchlorate (AP) Decomposition: The Missing Piece from Atomic Simulations

被引:18
作者
Chu, Qingzhao [1 ]
Wen, Mingjie [1 ]
Fu, Xiaolong [2 ]
Eslami, Abbas [3 ]
Chen, Dongping [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[2] Xian Modern Chem Res Inst, Xian 710065, Peoples R China
[3] Univ Mazandaran, Fac Chem, Dept Inorgan Chem, Babolsar 4741695447, Iran
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; THERMAL-DECOMPOSITION; FORCE-FIELD; COMBUSTION; FLAME; KINETICS; CL-20;
D O I
10.1021/acs.jpcc.3c01666
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thedecomposition network of ammonium perchlorate (AP) is essentialfor combustion performance and safety of solid propellants, whilethe detailed reaction pathway during thermolysis is far from cleardue to the ultrafast and complex reactions involved. Herein, we presentdirect atomic simulations of AP thermal decomposition and proposea detailed decomposition network to fill the missing piece in thekinetic models by using a neural network model derived from ab initio calculations. The proton transfer is the dominantchannel (NH4 + ClO4 & RARR; NH3 +HClO4), which is also observed in previous mass spectraexperiments. In addition, gas products from decomposition play a criticalrole in promoting the decomposition of solid AP. For example, theH abstraction reaction by OH is found to be a critical pathway forAP decomposition. These simulations provide atomic insights into thecomplex reaction dynamics of AP and can be extended to investigatethe reaction mechanism of novel energetic materials.
引用
收藏
页码:12976 / 12982
页数:7
相关论文
共 40 条
[1]  
[Anonymous], 1984, Fundamentals of solid-propellant combustion
[2]  
Bernigaud P., 2022, P 9 EUR C AER SCI
[3]   Thermal decomposition of ammonium perchlorate [J].
Boldyrev, VV .
THERMOCHIMICA ACTA, 2006, 443 (01) :1-36
[4]   Monitoring the melting behavior of boron nanoparticles using a neural network potential [J].
Chang, Xiaoya ;
Chu, Qingzhao ;
Chen, Dongping .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (18) :12841-12853
[5]   ReaxFF simulations on the combustion of Al and n-butanol nanofluid [J].
Cheng, Yu-Xiao ;
Zhao, Ying ;
Zhao, Feng-Qi ;
Xu, Si-Yu ;
Ju, Xue-Hai ;
Ye, Cai-Chao .
FUEL, 2022, 330
[6]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[7]   Toward full ab initio modeling of soot formation in a nanoreactor [J].
Chu, Qingzhao ;
Wang, Chenguang ;
Chen, Dongping .
CARBON, 2022, 199 :87-95
[8]   Revealing the thermal decomposition mechanism of RDX crystals by a neural network potential [J].
Chu, Qingzhao ;
Chang, Xiaoya ;
Ma, Kang ;
Fu, Xiaolong ;
Chen, Dongping .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (42) :25885-25894
[9]   Exploring Complex Reaction Networks Using Neural Network-BasedMolecular Dynamics Simulation [J].
Chu, Qingzhao ;
Luo, Kai H. ;
Chen, Dongping .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (18) :4052-4057
[10]  
Cui X., 2018, ADV NEURAL INFORM PR, P6048