Mechanical Characterisation and Simulation of the Tensile Behaviour of Polymeric Additively Manufactured Lattice Structures

被引:7
|
作者
Bruson, D. [1 ]
Galati, M. [1 ]
Calignano, F. [1 ]
Iuliano, L. [1 ]
机构
[1] Politecn Torino, Dept Management & Prod Engn, Turin, Italy
关键词
Lattice structure; Tensile test; Selective laser sintering (SLS); Polyamide 12 (PA12); Porosities;
D O I
10.1007/s11340-023-00976-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
BackgroundThe mechanical properties of lattice structures have been primarily investigated using uniaxial compression loads. Particularly for polymers, tensile properties are rarely considered because of the difficulties of defining a suitable specimen design in which the fracture occurs within the gauge length.ObjectiveThis work proposes a novel formulation to obtain a specimen for the tensile test with a gradation of the lattice density at the interface with the bulk portion, which realises a uniform stress distribution. The aim is to combine a localisation of the fracture in the gauge length with a specimen geometry accomplishing the EN ISO 527 standard and analyse the correlation between the mechanical performance and the defects induced by the process on such thin structures.MethodsThe formulation is experimentally and numerically (FEM) tested by designed specimens with different cell topology, cell size, strut diameter, and number of cells in the sample thickness. Also, results from uniaxial compression tests are used to validate the tensile properties. The specimens are manufactured in different orientations in the building volume by laser powder bed fusion with Polyamide 12. The effects of the pores morphology, distribution, and inherent anisotropy are investigated using X-ray computed tomography analysis. This data is also used to tune a numerical model.ResultsThe numerical analysis showed a uniform stress distribution; experimentally, the fracture is localised inside the gauge length in respect of the ISO standard. Remarkably, among the different strut-based architectures, the elongation at break is, in the best case, 50% of the corresponding bulk material, while the tensile strengths are comparable. Vertical printed specimens exhibited a slight decrease in tensile strength, and the elongation at break was lower than 50% compared to the counterparts built along the horizontal orientation. Modifying the numerical model according to process-related dimensional deviations between the actual and the nominal structures significantly improved the numerical results. The remaining deviation highlighted the incorrectness of modelling the lattice material from the bulk properties.ConclusionDensity gradation is a reliable approach for describing the tensile behaviour of polymeric lattice structures. However, the lower amount of porosity and the different shape in the lattice led to a different material mechanical performance with respect to the corresponding bulk counterpart. Therefore, for polymeric lattice structures, the relationship between process-design-material appears crucial for correctly representing the structure behaviour.
引用
收藏
页码:1117 / 1133
页数:17
相关论文
共 50 条
  • [31] Numerical simulation of deformation behavior of additively manufactured polymer lattice structures with a porosity gradient
    Elenskaya, Nataliya
    Tashkinov, Mikhail
    4TH INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY (ICSI 2021), 2022, 37 : 692 - 697
  • [32] Finite element simulation of the compressive response of additively manufactured lattice structures with large diameters
    Guo, Honghu
    Takezawa, Aikihiro
    Honda, Masanori
    Kawamura, Chikara
    Kitamura, Mitsuru
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 175
  • [33] Inelastic finite deformation beam modeling, simulation, and validation of additively manufactured lattice structures
    Weeger, Oliver
    Valizadeh, Iman
    Mistry, Yash
    Bhate, Dhruv
    ADDITIVE MANUFACTURING LETTERS, 2023, 4
  • [34] Probabilistic analysis of additively manufactured polymer lattice structures
    Druecker, Sven
    Luedeker, Julian Kajo
    Blecken, Marvin
    Kurt, Arne
    Betz, Kirill
    Kriegesmann, Benedikt
    Fiedler, Bodo
    MATERIALS & DESIGN, 2022, 213
  • [35] Tuning Modal Behavior of Additively Manufactured Lattice Structures
    Beghini, Marco
    Grossi, Tommaso
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Senegaglia, Ivan
    del Turco, Paolo
    Fardelli, Andrea
    Morante, Francesco
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (07):
  • [36] The effect of anisotropy on the optimization of additively manufactured lattice structures
    Stankovic, Tino
    Mueller, Jochen
    Shea, Kristina
    ADDITIVE MANUFACTURING, 2017, 17 : 67 - 76
  • [37] On the determination of residual stresses in additively manufactured lattice structures
    Fritsch, Tobias
    Sprengel, Maximilian
    Evans, Alexander
    Farahbod-Sternahl, Lena
    Saliwan-Neumann, Romeo
    Hofmann, Michael
    Bruno, Giovanni
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 228 - 236
  • [38] Design of Additively Manufactured Lattice Structures for Biomedical Applications
    Martorelli, Massimo
    Gloria, Antonio
    Bignardi, Cristina
    Cali, Michele
    Maietta, Sverio
    JOURNAL OF HEALTHCARE ENGINEERING, 2020, 2020
  • [39] Mechanical behaviour of gel-filled additively-manufactured lattice structures under quasi-static compressive loading
    Black, Samuel
    Tzagiollari, Antzela
    Mondal, Subrata
    Dunne, Nicholas
    MacManus, David B.
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [40] Design of Additively Manufactured Lattice Structures for Tissue Regeneration
    Lanzotti, Antonio
    Martorelli, Massimo
    Russo, Teresa
    Gloria, Antonio
    THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 2154 - 2159