Incomplete multi-view clustering via attention-based contrast learning

被引:6
作者
Zhang, Yanhao [1 ]
Zhu, Changming [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Multi-view contrastive learning; Incomplete multi-view clustering; View unalignment (VN); View missing (VM); Attention-based contrast learning;
D O I
10.1007/s13042-023-01883-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) is an essential and challenging task in machine learning and data mining. In recent years, this field has attracted a lot of attention and achieved remarkable results. The success of multi-view clustering relies heavily on the consistency and integrity of data views to ensure complete data information. In the process of data collection and transmission, data inevitably be lost, which leads to the occurrence of partial view unalignment (VN) and partial view missing (VM). This situation reduces the available information and increases the difficulty of joint learning of multi-view data. To address the incomplete information problem, in this article, we present a novel incomplete multi-view clustering via attention-based contrast learning framework (MCAC) to address the VN and VM puzzles. Due to the diversity of different views, negative samples are formed by randomly selecting some cross-view samples from positive samples, then computing the correlation between local features and latent features for each view by maximizing mutual information and, fusing each specific low-dimensional representation into a joint representation through an attention fusion layer, in addition, adding noise contrast loss reduces or even eliminates the effect of negative samples. MCAC conducts experiments on seven multi-view datasets and demonstrates the effectiveness compared to eleven state-of-the-art methods on the multi-view clustering task.
引用
收藏
页码:4101 / 4117
页数:17
相关论文
共 50 条
  • [21] Incomplete multi-view clustering based on information fusion with self-supervised learning
    Cai, Yilong
    Shu, Qianyu
    Zhou, Zhengchun
    Meng, Hua
    INFORMATION FUSION, 2025, 117
  • [22] Adaptive Graph Completion Based Incomplete Multi-View Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    Wang, Junqian
    Fei, Lunke
    Zhang, Bob
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2493 - 2504
  • [23] Incomplete Multi-View Clustering With Paired and Balanced Dynamic Anchor Learning
    Li, Xingfeng
    Pan, Yuangang
    Sun, Yuan
    Sun, Quansen
    Sun, Yinghui
    Tsang, Ivor W.
    Ren, Zhenwen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1486 - 1497
  • [24] Consensus Learning with Complete Graph Regularization for Incomplete Multi-view Clustering
    Zhang, Jie
    Fei, Lunke
    Teng, Shaohua
    Zhu, Qinghua
    Imad, Rida
    Wen, Jie
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1485 - 1492
  • [25] Learning latent embedding via weighted projection matrix alignment for incomplete multi-view clustering
    Yin, Ming
    Liu, Xiaohua
    Wang, Liuyang
    He, Guoliang
    INFORMATION SCIENCES, 2023, 634 : 244 - 258
  • [26] Localized Sparse Incomplete Multi-View Clustering
    Liu, Chengliang
    Wu, Zhihao
    Wen, Jie
    Xu, Yong
    Huang, Chao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5539 - 5551
  • [27] Tensorized topological graph learning for generalized incomplete multi-view clustering
    Zhang, Zheng
    He, Wen-Jue
    INFORMATION FUSION, 2023, 100
  • [28] Learning missing instances in latent space for incomplete multi-view clustering
    Yu, Zhiqi
    Ye, Mao
    Xiao, Siying
    Tian, Liang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [29] Consensus guided incomplete multi-view clustering via geometric consistency learningConsensus guided incomplete multi-view clustering via geometric...H. Wang et al.
    Huibing Wang
    Wei Wang
    Mingze Yao
    Yawei Chen
    Jinjia Peng
    Guangqi Jiang
    Xianping Fu
    Applied Intelligence, 2025, 55 (8)
  • [30] Deep spectral clustering network for incomplete multi-view clustering
    Li, Ao
    Mei, Sanlin
    Feng, Cong
    Gao, Tianyu
    Huang, Hai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148