Kernel Selection for Gaussian Process in Cosmology: With Approximate Bayesian Computation Rejection and Nested Sampling

被引:13
作者
Zhang, Hao [1 ,2 ,3 ,4 ]
Wang, Yu-Chen [5 ,6 ]
Zhang, Tong-Jie [1 ,7 ,8 ]
Zhang, Tingting [9 ]
机构
[1] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China
[2] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, People's Republ Chin, 19A Yuquan Rd, Beijing 100049, Peoples R China
[5] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
[6] Peking Univ, Sch Phys, Dept Astron, Beijing 100871, Peoples R China
[7] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China
[8] Dezhou Univ, Inst Astron Sci, Dezhou 253023, Peoples R China
[9] PLA Army Engn Univ, Coll Command & Control Engn, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
OBSERVATIONAL H(Z) DATA; SEQUENTIAL MONTE-CARLO; LUMINOUS RED GALAXIES; COSMIC CHRONOMETERS; MODEL SELECTION; HUBBLE CONSTANT; DARK ENERGY; INFERENCE; CONSTRAINTS; PARAMETER;
D O I
10.3847/1538-4365/accb92
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Gaussian process (GP) has gained much attention in cosmology due to its ability to reconstruct cosmological data in a model-independent manner. In this study, we compare two methods for GP kernel selection: approximate Bayesian computation (ABC) rejection and nested sampling. We analyze three types of data: cosmic chronometer data, type Ia supernovae data, and gamma-ray burst data, using five kernel functions. To evaluate the differences between kernel functions, we assess the strength of evidence using Bayes factors. Our results show that, for ABC rejection, the Matern kernel with nu = 5/2 (M52 kernel) outperformes the commonly used radial basis function (RBF) kernel in approximating all three data sets. Bayes factors indicate that the M52 kernel typically supports the observed data better than the RBF kernel but with no clear advantage over other alternatives. However, nested sampling gives different results, with the M52 kernel losing its advantage. Nevertheless, Bayes factors indicate no significant dependence of the data on each kernel.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Abdessalem A. B., 2017, FRONT BUILT ENVIRON, V3, P52, DOI [10.3389/fbuil.2017.00052, DOI 10.3389/FBUIL.2017.00052]
[2]  
Acerbi L, 2018, Advances in Neural Information Processing Systems (NeurIPS 2018), V31, P8223
[3]   Approximate Bayesian computation for forward modeling in cosmology [J].
Akeret, Joel ;
Refregier, Alexandre ;
Amara, Adam ;
Seehars, Sebastian ;
Hasner, Caspar .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08)
[4]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990
[5]   Towards a model-independent reconstruction approach for late-time Hubble data [J].
Bernardo, Reginald Christian ;
Said, Jackson Levi .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08)
[6]   SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY [J].
Bernstein, J. P. ;
Kessler, R. ;
Kuhlmann, S. ;
Biswas, R. ;
Kovacs, E. ;
Aldering, G. ;
Crane, I. ;
D'Andrea, C. B. ;
Finley, D. A. ;
Frieman, J. A. ;
Hufford, T. ;
Jarvis, M. J. ;
Kim, A. G. ;
Marriner, J. ;
Mukherjee, P. ;
Nichol, R. C. ;
Nugent, P. ;
Parkinson, D. ;
Reis, R. R. R. ;
Sako, M. ;
Spinka, H. ;
Sullivan, M. .
ASTROPHYSICAL JOURNAL, 2012, 753 (02)
[7]   Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation [J].
Bonassi, Fernando V. ;
West, Mike .
BAYESIAN ANALYSIS, 2015, 10 (01) :171-187
[8]   Population Monte Carlo [J].
Cappé, O ;
Guillin, A ;
Marin, JM ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :907-929
[9]  
Colgáin EO, 2021, EUR PHYS J C, V81, DOI 10.1140/epjc/s10052-021-09708-2
[10]   Cosmology with gamma-ray bursts I. The Hubble diagram through the calibrated Ep,i-Eiso correlation [J].
Demianski, Marek ;
Piedipalumbo, Ester ;
Sawant, Disha ;
Amati, Lorenzo .
ASTRONOMY & ASTROPHYSICS, 2017, 598