Special Issue on Unsupervised Anomaly Detection

被引:3
作者
Goldstein, Markus [1 ]
机构
[1] Ulm Univ Appl Sci, Dept Comp Sci, D-89075 Ulm, Germany
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
关键词
D O I
10.3390/app13105916
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
引用
收藏
页数:3
相关论文
共 12 条
  • [1] A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data
    Al-amri, Redhwan
    Murugesan, Raja Kumar
    Man, Mustafa
    Abdulateef, Alaa Fareed
    Al-Sharafi, Mohammed A.
    Alkahtani, Ammar Ahmed
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [2] Phase I Analysis of Nonlinear Profiles Using Anomaly Detection Techniques
    Cheng, Chuen-Sheng
    Chen, Pei-Wen
    Wu, Yu-Tang
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [3] Outlier Detection with Explanations on Music Streaming Data: A Case Study with Danmark Music Group Ltd.
    Herskind Sejr, Jonas
    Christiansen, Thorbjorn
    Dvinge, Nicolai
    Hougesen, Dan
    Schneider-Kamp, Peter
    Zimek, Arthur
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 14
  • [4] Hybrid Machine Learning-Statistical Method for Anomaly Detection in Flight Data
    Jasra, Sameer Kumar
    Valentino, Gianluca
    Muscat, Alan
    Camilleri, Robert
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [5] Semi-Supervised Time Series Anomaly Detection Based on Statistics and Deep Learning
    Jiang, Jehn-Ruey
    Kao, Jian-Bin
    Li, Yu-Lin
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [6] Online Forecasting and Anomaly Detection Based on the ARIMA Model
    Kozitsin, Viacheslav
    Katser, Iurii
    Lakontsev, Dmitry
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [7] Anomaly Detection Method for Multivariate Time Series Data of Oil and Gas Stations Based on Digital Twin and MTAD-GAN
    Lian, Yuanfeng
    Geng, Yueyao
    Tian, Tian
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [8] MST-VAE: Multi-Scale Temporal Variational Autoencoder for Anomaly Detection in Multivariate Time Series
    Pham, Tuan-Anh
    Lee, Jong-Hoon
    Park, Choong-Shik
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [9] Low-Cost Active Anomaly Detection with Switching Latency
    Qin, Fengfan
    Feng, Hui
    Yang, Tao
    Hu, Bo
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [10] Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series
    Rewicki, Ferdinand
    Denzler, Joachim
    Niebling, Julia
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):