A regularity criterion for the 3D axisymmetric Boussinesq equations with non-zero swirl

被引:2
作者
Wang, Peng [1 ]
Guo, Zhengguang [1 ,2 ]
机构
[1] Huizhou Univ, Sch Math & Stat, Huizhou 516007, Guangdong, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; WEAK SOLUTIONS; INTERIOR REGULARITY; SYSTEM;
D O I
10.1063/5.0125404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we are devoted to establishing a new regularity criterion of weak solutions to incompressible axisymmetric Boussinesq equations. More precisely, we prove that for a small epsilon > 0, if the angular component of velocity field u(theta)(t, r, z) satisfies sup0< t<T vertical bar vertical bar zu(theta vertical bar)vertical bar L-infinity||(Omega(delta)) <= epsilon, where Omega(delta) := {(x(1), x(2), z) epsilon R-3|root x(1)(2) + x(2)(2) < delta} denotes a thin cylinder with infinite height and radius delta > 0, which is independent of the initial data, then the weak solution (u,rho) to 3D Boussinesq equations is regular in (0, T].
引用
收藏
页数:10
相关论文
共 32 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   ON THE GLOBAL REGULARITY OF AXISYMMETRIC NAVIER-STOKES-BOUSSINESQ SYSTEM [J].
Abidi, Hammadi ;
Hmidi, Taoufik ;
Keraani, Sahbi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) :737-756
[3]   Global regularity results for the 2D Boussinesq equations with vertical dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1637-1655
[4]   The 2D Boussinesq equations with vertical viscosity and vertical diffusivity [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1078-1088
[5]  
Cannon J. R., 1980, Approximation Methods for NavierStokes Problems (Proceedings of the Symposium, University of Paderborn, Paderborn, 1979), V771, P129
[6]   On the Serrin-Type Condition on One Velocity Component for the Navier-Stokes Equations [J].
Chae, D. ;
Wolf, J. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (03) :1323-1347
[7]   On the regularity of the axisymmetric solutions of the Navier-Stokes equations [J].
Chae, D ;
Lee, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) :645-671
[8]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[9]   REGULARITY OF 3D AXISYMMETRIC NAVIER-STOKES EQUATIONS [J].
Chen, Hui ;
Fang, Daoyuan ;
Zhang, Ting .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) :1923-1939
[10]   Regularity criteria and uniform estimates for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity [J].
Fan, Jishan ;
Li, Fucai ;
Nakamura, Gen .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)