Modeling the wall shear stress in large-eddy simulation using graph neural networks

被引:5
作者
Dupuy, Dorian [1 ]
Odier, Nicolas [1 ]
Lapeyre, Corentin [1 ]
Papadogiannis, Dimitrios [2 ]
机构
[1] European Ctr Res & Adv Training Sci Comp, F-31057 Toulouse 1, France
[2] Safran Tech, Magny Les Hameaux, France
来源
DATA-CENTRIC ENGINEERING | 2023年 / 4卷 / 01期
基金
欧盟地平线“2020”;
关键词
Computational fluid dynamics; graph neural networks; large-eddy simulation; wall modeling; APPROXIMATE BOUNDARY-CONDITIONS; TURBULENT-FLOW; LAYER; LES; DIFFUSION; SCHEMES;
D O I
10.1017/dce.2023.2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the Reynolds number increases, the large-eddy simulation (LES) of complex flows becomes increasingly intractable because near-wall turbulent structures become increasingly small. Wall modeling reduces the computa-tional requirements of LES by enabling the use of coarser cells at the walls. This paper presents a machine-learning methodology to develop data-driven wall-shear-stress models that can directly operate, a posteriori, on the unstruc-tured grid of the simulation. The model architecture is based on graph neural networks. The model is trained on a database which includes fully developed boundary layers, adverse pressure gradients, separated boundary layers, and laminar-turbulent transition. The relevance of the trained model is verified a posteriori for the simulation of a channel flow, a backward-facing step and a linear blade cascade.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Large-eddy simulation of droplet-laden decaying isotropic turbulence using artificial neural networks
    Freund, Andreas
    Ferrante, Antonino
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 142
  • [22] Large-eddy simulation (LES) of large hydrocyclones
    Delgadillo, Jose A.
    Rajamani, Raj K.
    PARTICULATE SCIENCE AND TECHNOLOGY, 2007, 25 (03) : 227 - 245
  • [23] Large-Eddy Simulation of transcritical flows
    Schmitt, T.
    Selle, L.
    Cuenot, B.
    Poinsot, T.
    COMPTES RENDUS MECANIQUE, 2009, 337 (6-7): : 528 - 538
  • [24] Large-eddy simulation without filter
    Knaepen, B
    Debliquy, O
    Carati, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (01) : 98 - 107
  • [25] Hot surface ignition of a wall-impinging fuel spray: Modeling and analysis using large-eddy simulation
    Mohaddes, Danyal
    Boettcher, Philipp
    Ihme, Matthias
    COMBUSTION AND FLAME, 2021, 228 : 443 - 456
  • [26] Towards wall-normal filtering for large-eddy simulation
    Templeton, Jeremy A.
    Shoeybi, Mohammad
    MULTISCALE MODELING & SIMULATION, 2006, 5 (02) : 420 - 444
  • [27] Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation
    Lantz, Jonas
    Gardhagen, Roland
    Karlsson, Matts
    MEDICAL ENGINEERING & PHYSICS, 2012, 34 (08) : 1139 - 1148
  • [28] Dispersion in stable boundary layers using large-eddy simulation
    Kemp, JR
    Thomson, DJ
    ATMOSPHERIC ENVIRONMENT, 1996, 30 (16) : 2911 - 2923
  • [29] Large-Eddy Simulation of Flow Through an Array of Cubes with Local Grid Refinement
    Goodfriend, Elijah
    Chow, Fotini Katopodes
    Vanella, Marcos
    Balaras, Elias
    BOUNDARY-LAYER METEOROLOGY, 2016, 159 (02) : 285 - 303
  • [30] Numerical modeling of current-induced scour around multi-wall foundation using large-eddy simulation
    Wu, Jiujiang
    Wang, Lingjuan
    Cheng, Qiangong
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2023, 17 (04) : 546 - 565