Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control

被引:2
|
作者
Ghosh, Ayan K. [1 ]
Su, Yu-Pin [2 ]
Forman, Michael [3 ]
Keyes, Robert F. [4 ]
Smith, Brian C. [4 ]
Hu, Xin [5 ]
Ferrer, Marc [5 ]
Arav-Boger, Ravit [1 ,2 ]
机构
[1] Med Coll Wisconsin, Dept Pediat, Div Infect Dis, Milwaukee, WI 53226 USA
[2] Johns Hopkins Univ, Dept Pediat, Div Infect Dis, Sch Med, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Pathol, Sch Med, Baltimore, MD USA
[4] Med Coll Wisconsin, Dept Biochem, Program Chem Biol, Milwaukee, WI USA
[5] NCATS, NIH, Rockville, MD USA
关键词
human cytomegalovirus; noncanonical Keap1-Nrf2 pathway; SQSTM1; p62; antioxidant response element; ARP101; p62-Keap1-Nrf2; TRANSCRIPTION FACTOR NRF2; SELECTIVE AUTOPHAGY; UP-REGULATION; IN-VITRO; INFECTION; P62/SQSTM1; DISEASE; LETERMOVIR; MUTATIONS; GENE;
D O I
10.1128/jvi.00160-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication.IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Control of oxidative stress by the Keap1-Nrf2 pathway
    J. D. Stewart
    J. G. Hengstler
    H. M. Bolt
    Archives of Toxicology, 2011, 85
  • [2] Control of oxidative stress by the Keap1-Nrf2 pathway
    Stewart, J. D.
    Hengstler, J. G.
    Bolt, H. M.
    ARCHIVES OF TOXICOLOGY, 2011, 85 (04) : 239 - 239
  • [3] Dysregulation of the Keap1-Nrf2 pathway in cancer
    Leinonen, Hanna M.
    Kansanen, Emilia
    Polonen, Petri
    Heinaniemi, Merja
    Levonen, Anna-Liisa
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2015, 43 : 645 - 649
  • [4] Role of the Keap1-Nrf2 Pathway in Cancer
    Leinonen, Hanna M.
    Kansanen, Emilia
    Polonen, Petri
    Heinaniemi, Merja
    Levonen, Anna-Liisa
    REDOX AND CANCER, PT A, 2014, 122 : 281 - 320
  • [5] The cytoprotective role of the Keap1-Nrf2 pathway
    Baird, Liam
    Dinkova-Kostova, Albena T.
    ARCHIVES OF TOXICOLOGY, 2011, 85 (04) : 241 - 272
  • [6] Toward clinical application of the Keap1-Nrf2 pathway
    Suzuki, Takafumi
    Motohashi, Hozumi
    Yamamoto, Masayuki
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2013, 34 (06) : 340 - 346
  • [7] Molecular Basis of the KEAP1-NRF2 Signaling Pathway
    Suzuki, Takafumi
    Takahashi, Jun
    Yamamoto, Masayuki
    MOLECULES AND CELLS, 2023, 46 (03) : 133 - 141
  • [8] The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway
    Baird, Liam
    Yamamoto, Masayuki
    MOLECULAR AND CELLULAR BIOLOGY, 2020, 40 (13)
  • [9] Insights into the Regulation of GFR by the Keap1-Nrf2 Pathway
    Kidokoro, Kengo
    Kadoya, Hiroyuki
    Cherney, David Z. I.
    Kondo, Megumi
    Wada, Yoshihisa
    Umeno, Reina
    Kishi, Seiji
    Nagasu, Hajime
    Nagai, Kojiro
    Suzuki, Takafumi
    Sasaki, Tamaki
    Yamamoto, Masayuki
    Kanwar, Yashpal S.
    Kashihara, Naoki
    KIDNEY360, 2023, 4 (10): : 1454 - 1466
  • [10] Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway
    Kageyama, Shun
    Sou, Yu-shin
    Uemura, Takefumi
    Kametaka, Satoshi
    Saito, Tetsuya
    Ishimura, Ryosuke
    Kouno, Tsuguka
    Bedford, Lynn
    Mayer, R. John
    Lee, Myung-Shik
    Yamamoto, Masayuki
    Waguri, Satoshi
    Tanaka, Keiji
    Komatsu, Masaaki
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (36) : 24944 - 24955