Three-dimensional porous composite Mn2O3@PPy as cathode material for zinc ion battery with high energy density

被引:36
作者
Cai, Kexing [1 ,3 ]
Luo, Shao-hua [1 ,2 ,3 ,4 ,6 ]
Qian, Lixiong [1 ,3 ,5 ]
Meng, Xue [1 ,3 ]
Yan, Sheng-xue [1 ,3 ]
Guo, Jing [1 ,3 ]
Wang, Qing [1 ,2 ,3 ]
Ji, Xian-bing [4 ]
Zhou, Xiu-yan [3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
[3] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
[4] Hebei Univ Environm Engn, Qinhuangdao 066004, Peoples R China
[5] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[6] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Polypyrrole coating; 3D spherical structure; Cathode material; Aqueous Zn-ion batteries; Storage mechanism; HIGH-PERFORMANCE CATHODE; CHALLENGES; TRANSFORMATION; OXIDATION; GROWTH;
D O I
10.1016/j.jpowsour.2023.232854
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mn-based materials are among the most promising Zn-ion batteries (ZIBs) cathode materials. However, their inherently poor conductivity and structure collapse hinder their practical application. Herein, Mn2O3@polypyrrole (PPy) porous spheres are prepared using a hydrothermal method. Coating Mn2O3 with PPy, a conductive polymer, improves its conductivity and inhibits Mn dissolution during electrochemical reactions. The Mn2O3@PPy cathode exhibits remarkable electrochemical performance and an excellent specific capacity of 287.7 mAh.g(-1) after 300 cycles at 0.1 A g(-1). The cathode maintains a specific capacity of 73.5 mAh.g(-1) after 3000 cycles at 3.0 A g(-1) and exhibits an excellent cycle life. In addition, the co-insertion/extraction of H+ and Zn2+ and formation/dissolution mechanism of zinc sulfide hydrate of the Mn2O3@PPy electrode are evaluated theoretically using several methods. The energy density of the cathode at the power density of 98.7 W kg(-1) is 602.8 Wh.kg(-1), which is higher than those of numerous previously reported advanced ZIBs cathodes.
引用
收藏
页数:13
相关论文
共 67 条
[11]   Cobalt-nickel bimetallic sulfide (NiS2/CoS2) based dual-carbon framework for super sodium ion storage [J].
Deng, Qixiang ;
Liu, Xinlong ;
Li, Zhiyong ;
Fan, Haosen ;
Zhang, Yufei ;
Yang, Hui Ying .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 633 :480-488
[12]   Ultrathin cobalt nickel selenides (Co0.5Ni0.5Se2) nanosheet arrays anchoring on Ti3C2 MXene for high-performance Na+/K+ batteries [J].
Deng, Qixiang ;
Wang, Mengqi ;
Liu, Xinlong ;
Fan, Haosen ;
Zhang, Yufei ;
Yang, Hui Ying .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 626 :700-709
[13]   Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J].
Du, Wencheng ;
Ang, Edison Huixiang ;
Yang, Yang ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3330-3360
[14]   Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn2O3 Nanoporous Architecture Cathode [J].
Feng, Danyang ;
Gao, Tu-Nan ;
Zhang, Ling ;
Guo, Bingkun ;
Song, Shuyan ;
Qiao, Zhen-An ;
Dai, Sheng .
NANO-MICRO LETTERS, 2019, 12 (01)
[15]   Electrochemical transformation reaction of Cu-MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life [J].
Fenta, Fekadu Wubatu ;
Olbasa, Bizualem Wakuma ;
Tsai, Meng-Che ;
Weret, Misganaw Adigo ;
Zegeye, Tilahun Awoke ;
Huang, Chen-Jui ;
Huang, Wei-Hsiang ;
Zeleke, Tamene Simachew ;
Sahalie, Niguse Aweke ;
Pao, Chih-Wen ;
Wu, She-huang ;
Su, Wei-Nien ;
Dai, Hongjie ;
Hwang, Bing Joe .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (34) :17595-17607
[16]   Zn/MnO2 battery chemistry with dissolution-deposition mechanism [J].
Guo, Xun ;
Zhou, Jiang ;
Bai, Chaolei ;
Li, Xinkuo ;
Fang, Guozhao ;
Liang, Shuquan .
MATERIALS TODAY ENERGY, 2020, 16
[17]   Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries [J].
Hu, Kang ;
Jin, Danqing ;
Zhang, Yao ;
Ke, Longwei ;
Shang, Huan ;
Yan, Yan ;
Lin, Huijuan ;
Rui, Kun ;
Zhu, Jixin .
JOURNAL OF ENERGY CHEMISTRY, 2021, 61 :594-601
[18]   Self-initiated coating of polypyrrole on MnO2/Mn2O3 nanocomposite for high-performance aqueous zinc-ion batteries [J].
Huang, Aixiang ;
Zhou, Weijun ;
Wang, Anran ;
Chen, Minfeng ;
Chen, Jizhang ;
Tian, Qinghua ;
Xu, Junling .
APPLIED SURFACE SCIENCE, 2021, 545 (545)
[19]   Recycling of lithium-ion batteries: Recent advances and perspectives [J].
Huang, Bin ;
Pan, Zhefei ;
Su, Xiangyu ;
An, Liang .
JOURNAL OF POWER SOURCES, 2018, 399 :274-286
[20]   Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+ [J].
Huang, Yongfeng ;
Mou, Jian ;
Liu, Wenbao ;
Wang, Xianli ;
Dong, Liubing ;
Kang, Feiyu ;
Xu, Chengjun .
NANO-MICRO LETTERS, 2019, 11 (01)