A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries

被引:96
|
作者
Ren, Zhong
Du, Changqing [1 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
关键词
Lithium-ion batteries; Machine learning techniques; State-of-charge; State-of-health; RECURRENT NEURAL-NETWORK; MANAGEMENT-SYSTEM; ONLINE STATE; PREDICTION; MODEL; REGRESSION; CAPACITY; PROGNOSTICS; UNIT;
D O I
10.1016/j.egyr.2023.01.108
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Vehicle electrification has been proven to be an efficient way to reduce carbon dioxide emissions and solve the energy crisis. Lithium-ion batteries (LiBs) are considered the dominant energy storage medium for electric vehicles (EVs) owing to their high energy density and long lifespan. To maintain a safe, efficient, and stable operating condition for the battery system, we must monitor the state of the battery, especially the state-of-charge (SOC) and state-of-health (SOH). With the development of big data, cloud computing, and other emerging techniques, data-driven machine learning (ML) techniques have attracted attention for their enormous potential in state estimation for LiBs. Therefore, this paper reviews the four most studied types of ML algorithms for SOC and SOH estimation, including shallow neural network (NN), deep learning (DL), support vector machine (SVM), and Gaussian process regression (GPR) methods. The basic principles and uniform flowcharts of different ML algorithms are introduced. Then, the applications of each ML algorithm for state estimation within recent years are comprehensively reviewed and compared in terms of used datasets, input features, hyperparameter selection, performance metrics, advantages, and disadvantages. Based on the investigation, this review discusses the current challenges and prospects from four aspects, aiming to provide some inspiration for developing advanced ML state estimation algorithms.@2023 The Authors Publised by Elsevier ltd This is an open access article under the CC BY license
引用
收藏
页码:2993 / 3021
页数:29
相关论文
共 50 条
  • [21] A Review of State-of-health Estimation of Lithium-ion Batteries: Experiments and Data
    Zhou, Ruomei
    Fu, Shasha
    Peng, Weiwen
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [22] Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge
    Jo, Sungwoo
    Jung, Sunkyu
    Roh, Taemoon
    ENERGIES, 2021, 14 (21)
  • [23] A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries
    Luo, Kai
    Chen, Xiang
    Zheng, Huiru
    Shi, Zhicong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 159 - 173
  • [24] State-of-charge estimation of lithium-ion batteries using LSTM and UKF
    Yang, Fangfang
    Zhang, Shaohui
    Li, Weihua
    Miao, Qiang
    ENERGY, 2020, 201 (201)
  • [25] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [26] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [27] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [28] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [29] Monitoring State of Health and State of Charge of Lithium-Ion Batteries Using Machine Learning Techniques
    Varshney, Ayush
    Singh, Aman
    Pradeep, Alka Ann
    Joseph, Anu
    Gopakumar, P.
    PROCEEDINGS OF 2021 5TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (IEEE CATCON 2021), 2021, : 22 - 27
  • [30] Estimation of state-of-charge and state-of-health for lithium-ion battery based on improved firefly optimized particle filter
    Ouyang, Tiancheng
    Ye, Jinlu
    Xu, Peihang
    Wang, Chengchao
    Xu, Enyong
    JOURNAL OF ENERGY STORAGE, 2023, 68