Perceptual Quality Assessment of Cartoon Images

被引:26
作者
Chen, Hangwei [1 ]
Chai, Xiongli [1 ]
Shao, Feng [1 ]
Wang, Xuejin [2 ]
Jiang, Qiuping [1 ]
Meng, Xiangchao [1 ]
Ho, Yo-Sung [3 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou 350118, Peoples R China
[3] Gwangju Inst Sci & Technol GIST, Sch Informat & Commun, Gwangju 500712, South Korea
关键词
Image color analysis; Distortion; Measurement; Image coding; Quality assessment; Image quality; Feature extraction; Cartoon images; color change; no-reference image quality assessment; structural measure; color measure;
D O I
10.1109/TMM.2021.3121875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the animation industry, automatically predicting the quality of cartoon images based on the inputs of general distortions and color change is an urgent task, while the existing no-reference (NR) methods usually measure the perceptual quality of the natural images. In this paper, based on the observation that structure and color are the main factors affecting cartoon images quality, we proposed a new NR quality prediction metric for cartoon images, which fully takes gradient and color information into account. The experimental results on our newly constructed NBU-CIQAD dataset with color change and other existing cartoon image dataset demonstrate that the proposed method significantly outperforms existing no-references methods for the task of cartoon image quality assessment.
引用
收藏
页码:140 / 153
页数:14
相关论文
共 61 条
[1]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[2]   Blind Quality Assessment for Cartoon Images [J].
Chen, Yuan ;
Zhao, Yang ;
Li, Shujie ;
Zuo, Wangmeng ;
Jia, Wei ;
Liu, Xiaoping .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (09) :3282-3288
[3]   Perceptual Quality Assessment for Screen Content Images by Spatial Continuity [J].
Fang, Yuming ;
Du, Rengang ;
Zuo, Yifan ;
Wen, Wenying ;
Li, Leida .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (11) :4050-4063
[4]   Perceptual Evaluation for Multi-Exposure Image Fusion of Dynamic Scenes [J].
Fang, Yuming ;
Zhu, Hanwei ;
Ma, Kede ;
Wang, Zhou ;
Li, Shutao .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) :1127-1138
[5]   No Reference Quality Assessment for Screen Content Images With Both Local and Global Feature Representation [J].
Fang, Yuming ;
Yan, Jiebin ;
Li, Leida ;
Wu, Jinjian ;
Lin, Weisi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) :1600-1610
[6]   Evaluating Quality of Screen Content Images Via Structural Variation Analysis [J].
Gu, Ke ;
Qiao, Junfei ;
Min, Xiongkuo ;
Yue, Guanghui ;
Lin, Weisi ;
Thalmann, Daniel .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (10) :2689-2701
[7]   No-Reference Quality Assessment of Screen Content Pictures [J].
Gu, Ke ;
Zhou, Jun ;
Qiao, Jun-Fei ;
Zhai, Guangtao ;
Lin, Weisi ;
Bovik, Alan Conrad .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (08) :4005-4018
[8]   Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data [J].
Gu, Ke ;
Tao, Dacheng ;
Qiao, Jun-Fei ;
Lin, Weisi .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) :1301-1313
[9]   No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization [J].
Gu, Ke ;
Lin, Weisi ;
Zhai, Guangtao ;
Yang, Xiaokang ;
Zhang, Wenjun ;
Chen, Chang Wen .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) :4559-4565
[10]   Learning a blind quality evaluation engine of screen content images [J].
Gu, Ke ;
Zhai, Guangtao ;
Lin, Weisi ;
Yang, Xiaokang ;
Zhang, Wenjun .
NEUROCOMPUTING, 2016, 196 :140-149