Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc-Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages

被引:140
作者
Jiang, Haifeng [1 ,2 ]
Chen, Gao-Feng [1 ,3 ]
Savateev, Oleksandr [3 ]
Xue, Jian [1 ]
Ding, Liang-Xin [1 ]
Liang, Zhenxing [1 ]
Antonietti, Markus [3 ]
Wang, Haihui [2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Membrane Mat & Engn, Beijing 100084, Peoples R China
[3] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, Res Campus Golm,Muhlenberg 1, D-14476 Potsdam, Germany
基金
国家重点研发计划;
关键词
Ammonia Production; Cu Nanowires; Nitrate Reduction; Zn-Nitrate Battery; 2+6]-Electron Pathway; CUO NANOWIRES; CATALYSTS;
D O I
10.1002/anie.202218717
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The aqueous electrocatalytic reduction of NO3- into NH3 (NitrRR) presents a sustainable route applicable to NH3 production and potentially energy storage. However, the NitrRR involves a directly eight-electron transfer process generally required a large overpotential (<-0.2 V versus reversible hydrogen electrode (vs. RHE)) to reach optimal efficiency. Here, inspired by biological nitrate respiration, the NitrRR was separated into two stages along a [2+6]-electron pathway to alleviate the kinetic barrier. The system employed a Cu nanowire catalyst produces NO2- and NH3 with current efficiencies of 91.5 % and 100 %, respectively at lower overpotentials (>+0.1 vs. RHE). The high efficiency for such a reduction process was further explored in a zinc-nitrate battery. This battery could be specified by a high output voltage of 0.70 V, an average energy density of 566.7 Wh L-1 at 10 mA cm(-2) and a power density of 14.1 mW cm(-2), which is well beyond all previously reported similar concepts.
引用
收藏
页数:9
相关论文
共 63 条
  • [1] A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
    Andersen, Suzanne Z.
    Colic, Viktor
    Yang, Sungeun
    Schwalbe, Jay A.
    Nielander, Adam C.
    McEnaney, Joshua M.
    Enemark-Rasmussen, Kasper
    Baker, Jon G.
    Singh, Aayush R.
    Rohr, Brian A.
    Statt, Michael J.
    Blair, Sarah J.
    Mezzavilla, Stefano
    Kibsgaard, Jakob
    Vesborg, Peter C. K.
    Cargnello, Matteo
    Bent, Stacey F.
    Jaramillo, Thomas F.
    Stephens, Ifan E. L.
    Norskov, Jens K.
    Chorkendorff, Ib
    [J]. NATURE, 2019, 570 (7762) : 504 - +
  • [2] [Anonymous], 2022, ANGEW CHEM, V134
  • [3] [Anonymous], 2021, ANGEW CHEM, V133, P14250
  • [4] [Anonymous], 2020, ANGEW CHEM, V132, P9798
  • [5] [Anonymous], 2020, ANGEW CHEM, V132, P5388
  • [6] [Anonymous], 2023, ANGEW CHEM, V135
  • [8] Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst
    Chen, Feng-Yang
    Wu, Zhen-Yu
    Gupta, Srishti
    Rivera, Daniel J.
    Lambeets, Sten, V
    Pecaut, Stephanie
    Kim, Jung Yoon Timothy
    Zhu, Peng
    Finfrock, Y. Zou
    Meira, Debora Motta
    King, Graham
    Gao, Guanhui
    Xu, Wenqian
    Cullen, David A.
    Zhou, Hua
    Han, Yimo
    Perea, Daniel E.
    Muhich, Christopher L.
    Wang, Haotian
    [J]. NATURE NANOTECHNOLOGY, 2022, 17 (07) : 759 - +
  • [9] Saving the Energy Loss in Lithium-Mediated Nitrogen Fixation by Using a Highly Reactive Li3N Intermediate for C-N Coupling Reactions
    Chen, Gao-Feng
    Savateev, Aleksandr
    Song, Zihan
    Wu, Haoyu
    Markushyna, Yevheniia
    Zhang, Lili
    Wang, Haihui
    Antonietti, Markus
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (27)
  • [10] Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst
    Chen, Gao-Feng
    Yuan, Yifei
    Jiang, Haifeng
    Ren, Shi-Yu
    Ding, Liang-Xin
    Ma, Lu
    Wu, Tianpin
    Lu, Jun
    Wang, Haihui
    [J]. NATURE ENERGY, 2020, 5 (08) : 605 - 613