Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review

被引:18
|
作者
Arnould, Louis [1 ,2 ]
Meriaudeau, Fabrice [3 ]
Guenancia, Charles [4 ,5 ]
Germanese, Clement [1 ]
Delcourt, Cecile [2 ]
Kawasaki, Ryo [6 ]
Cheung, Carol Y. [7 ]
Creuzot-Garcher, Catherine [1 ,8 ]
Grzybowski, Andrzej [9 ,10 ]
机构
[1] Dijon Univ Hosp, Ophthalmol Dept, 14 Rue Paul Gaffarel, F-21079 Dijon, France
[2] Univ Bordeaux, Inserm, Bordeaux Populat Hlth Res Ctr, UMR U1219, F-33000 Bordeaux, France
[3] Univ Bourgogne Franche Comte, Lab ImViA, IFTIM, F-21078 Dijon, France
[4] Univ Bourgogne Franche Comte, Fac Hlth Sci, Pathophysiol & Epidemiol Cerebrocardiovasc Dis, EA 7460, Dijon, France
[5] Dijon Univ Hosp, Cardiol Dept, Dijon, France
[6] Osaka Univ Hosp, Artificial Intelligence Ctr Med Res & Applicat, Osaka, Japan
[7] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Peoples R China
[8] Univ Bourgogne Franche Comte, Ctr Sci Gout & Alimentat, AgroSup Dijon, CNRS,INRAE, Dijon, France
[9] Univ Warmia & Mazury, Dept Ophthalmol, Olsztyn, Poland
[10] Inst Res Ophthalmol, Poznan, Poland
关键词
Artificial intelligence; Deep learning; Retina; Cardiovascular disease; OCT-angiography; Adaptive optics; Oculomics; Fundus photographs; Retinal vascular imaging; Retinal vessels; COHERENCE TOMOGRAPHY ANGIOGRAPHY; CORONARY-HEART-DISEASE; DEEP-LEARNING-SYSTEM; BLOOD-PRESSURE; VESSEL DIAMETERS; MICROVASCULAR ABNORMALITIES; ATHEROSCLEROSIS RISK; MACULAR DEGENERATION; DIABETIC-RETINOPATHY; IMAGE-ANALYSIS;
D O I
10.1007/s40123-022-00641-5
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
The healthcare burden of cardiovascular diseases remains a major issue worldwide. Understanding the underlying mechanisms and improving identification of people with a higher risk profile of systemic vascular disease through noninvasive examinations is crucial. In ophthalmology, retinal vascular network imaging is simple and noninvasive and can provide in vivo information of the microstructure and vascular health. For more than 10 years, different research teams have been working on developing software to enable automatic analysis of the retinal vascular network from different imaging techniques (retinal fundus photographs, OCT angiography, adaptive optics, etc.) and to provide a description of the geometric characteristics of its arterial and venous components. Thus, the structure of retinal vessels could be considered a witness of the systemic vascular status. A new approach called "oculomics " using retinal image datasets and artificial intelligence algorithms recently increased the interest in retinal microvascular biomarkers. Despite the large volume of associated research, the role of retinal biomarkers in the screening, monitoring, or prediction of systemic vascular disease remains uncertain. A PubMed search was conducted until August 2022 and yielded relevant peer-reviewed articles based on a set of inclusion criteria. This literature review is intended to summarize the state of the art in oculomics and cardiovascular disease research.
引用
收藏
页码:657 / 674
页数:18
相关论文
共 29 条
  • [21] Automated proximal coronary artery calcium identification using artificial intelligence: advancing cardiovascular risk assessment
    Zhou, Jianhang
    Shanbhag, Aakash D.
    Han, Donghee
    Marcinkiewicz, Anna M.
    Buchwald, Mikolaj
    Miller, Robert J. H.
    Killekar, Aditya
    Manral, Nipun
    Grodecki, Kajetan
    Geers, Jolien
    Pieszko, Konrad
    Yi, Jirong
    Zhang, Wenhao
    Waechter, Parker
    Gransar, Heidi
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2025, 26 (03) : 471 - 480
  • [22] Sustainable Flood Risk Identification and Assessment Using Artificial Intelligence: A Literature Review and Case Scenario
    Ahmed, Imran
    Ahmad, Misbah
    Chehri, Abdellah
    Joen, Gwanggil
    2024 IEEE WORLD FORUM ON PUBLIC SAFETY TECHNOLOGY, WFPST 2024, 2024, : 25 - 30
  • [23] A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool
    Saba, Luca
    Maindarkar, Mahesh
    Khanna, Narendra N.
    Johri, Amer M.
    Mantella, Laura
    Laird, John R.
    Paraskevas, Kosmas I.
    Ruzsa, Zoltan
    Kalra, Manudeep K.
    Fernandes, Jose Fernandes E.
    Chaturvedi, Seemant
    Nicolaides, Andrew
    Rathore, Vijay
    Singh, Narpinder
    Fouda, Mostafa M.
    Isenovic, Esma R.
    Al-Maini, Mustafa
    Viswanathan, Vijay
    Suri, Jasjit S.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (10):
  • [24] Cardiovascular Disease Risk Assessment: a Review of Risk Factor-based Algorithms and Assessments of Vascular Health
    Carrubba C.J.
    Blaha M.J.
    Nasir K.
    DeFilippis A.P.
    Current Cardiovascular Risk Reports, 2014, 8 (12) : 1 - 8
  • [25] Artificial Intelligence-Driven Mammography-Based Future Breast Cancer Risk Prediction: A Systematic Review
    Schopf, Cody M.
    Ramwala, Ojas A.
    Lowry, Kathryn P.
    Hofvind, Solveig
    Marinovich, M. Luke
    Houssami, Nehmat
    Elmore, Joann G.
    Dontchos, Brian N.
    Lee, Janie M.
    Lee, Christoph I.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2024, 21 (02) : 319 - 328
  • [26] Association between the retinal vascular network with Singapore "I" Vessel Assessment (SIVA) software, cardiovascular history and risk factors in the elderly: The Montrachet study, population-based study
    Arnould, Louis
    Binquet, Christine
    Guenancia, Charles
    Alassane, Seydou
    Kawasaki, Ryo
    Daien, Vincent
    Tzourie, Christophe
    Kawasaki, Yumiko
    Bourredjem, Abderrahmane
    Bron, Alain
    Creuzot-Garcher, Catherine
    PLOS ONE, 2018, 13 (04):
  • [27] Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study
    Khanna, Narendra N.
    Maindarkar, Mahesh A.
    Viswanathan, Vijay
    Puvvula, Anudeep
    Paul, Sudip
    Bhagawati, Mrinalini
    Ahluwalia, Puneet
    Ruzsa, Zoltan
    Sharma, Aditya
    Kolluri, Raghu
    Krishnan, Padukone R.
    Singh, Inder M.
    Laird, John R.
    Fatemi, Mostafa
    Alizad, Azra
    Dhanjil, Surinder K.
    Saba, Luca
    Balestrieri, Antonella
    Faa, Gavino
    Paraskevas, Kosmas, I
    Misra, Durga Prasanna
    Agarwal, Vikas
    Sharma, Aman
    Teji, Jagjit S.
    Al-Maini, Mustafa
    Nicolaides, Andrew
    Rathore, Vijay
    Naidu, Subbaram
    Liblik, Kiera
    Johri, Amer M.
    Turk, Monika
    Sobel, David W.
    Miner, Martin
    Viskovic, Klaudija
    Tsoulfas, George
    Protogerou, Athanasios D.
    Mavrogeni, Sophie
    Kitas, George D.
    Fouda, Mostafa M.
    Kalra, Mannudeep K.
    Suri, Jasjit S.
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (22)
  • [28] 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0
    Skandha, Sanagala S.
    Gupta, Suneet K.
    Saba, Luca
    Koppula, Vijaya K.
    Johri, Amer M.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Laird, John R.
    Pareek, Gyan
    Miner, Martin
    Sfikakis, Petros P.
    Protogerou, Athanasios
    Misra, Durga P.
    Agarwal, Vikas
    Sharma, Aditya M.
    Viswanathan, Vijay
    Rathore, Vijay S.
    Turk, Monika
    Kolluri, Raghu
    Viskovic, Klaudija
    Cuadrado-Godia, Elisa
    Kitas, George D.
    Nicolaides, Andrew
    Suri, Jasjit S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 125
  • [29] A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review
    Suri, Jasjit S.
    Bhagawati, Mrinalini
    Paul, Sudip
    Protogerou, Athanasios D.
    Sfikakis, Petros P.
    Kitas, George D.
    Khanna, Narendra N.
    Ruzsa, Zoltan
    Sharma, Aditya M.
    Saxena, Sanjay
    Faa, Gavino
    Laird, John R.
    Johri, Amer M.
    Kalra, Manudeep K.
    Paraskevas, Kosmas, I
    Saba, Luca
    DIAGNOSTICS, 2022, 12 (03)