Non-uniform continuity on initial data for the two-component b-family system in Besov space

被引:0
作者
Wu, Xing [1 ]
Li, Cui [2 ]
Cao, Jie [1 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450000, Henan, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 02期
基金
中国国家自然科学基金;
关键词
Non-uniform dependence; Two component b-family system; Besov spaces; GLOBAL WEAK SOLUTIONS; BLOW-UP PHENOMENA; CAMASSA-HOLM; DEGASPERIS-PROCESI; WELL-POSEDNESS; CAUCHY-PROBLEM; INTEGRABLE EQUATION; ILL-POSEDNESS; WAVE-BREAKING; EXISTENCE;
D O I
10.1007/s00605-022-01790-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a two-component b-family system, which includes the two-component Camassa-Holm system and the two-component Degasperis-Procesi system as special case. It is shown that the solution map of this system is not uniformly continuous on the initial data in Besov spaces B-p,r(s-1) (R) x B-p,r(s) (R) with s > max{1 + 1/p, 3/2}, 1 <= p, r <= infinity. Our result covers and extends the previous non-uniform continuity in Sobolev spaces Hs-1 (R) x H-s (R) for s > 5/2 to Besov spaces (Nonlinear Anal., 2014, 111: 1-14). Compared with the generalized rotation b-family system considered by Holmes et al. (Z. Angew. Math. Mech., 2021), our non-uniform continuity is established in a broader range of Besov spaces.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 46 条
  • [1] Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
  • [2] Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
  • [3] 2-5
  • [4] Wave breaking for nonlinear nonlocal shallow water equations
    Constantin, A
    Escher, J
    [J]. ACTA MATHEMATICA, 1998, 181 (02) : 229 - 243
  • [5] Global weak solutions for a shallow water equation
    Constantin, A
    Molinet, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) : 45 - 61
  • [6] On the scattering problem for the Camassa-Holm equation
    Constantin, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008): : 953 - 970
  • [7] Existence of permanent and breaking waves for a shallow water equation: A geometric approach
    Constantin, A
    [J]. ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) : 321 - +
  • [8] Constantin A., 1997, EXPO MATH, V15, P53
  • [9] Constantin A., 1998, ANN SC NORM SUPER S, V26, P303
  • [10] Inverse scattering transform for the Degasperis-Procesi equation
    Constantin, Adrian
    Ivanov, Rossen I.
    Lenells, Jonatan
    [J]. NONLINEARITY, 2010, 23 (10) : 2559 - 2575