Physiological and Biochemical Characteristics and Response Patterns of Salinity Stress Responsive Genes (SSRGs) in Wild Quinoa (Chenopodium quinoa L.)

被引:1
|
作者
Jiang, Yurong [1 ]
Yasir, Muhammad [1 ]
Cao, Yuefen [1 ]
Hu, Lejia [1 ]
Yan, Tongli [1 ]
Zhu, Shuijin [2 ]
Lu, Guoquan [1 ]
机构
[1] Zhejiang A&F Univ, Coll Adv Agr Sci, Key Lab Qual Improvement Agr Prod Zhejiang Prov, Hangzhou 311300, Peoples R China
[2] Zhejiang Univ, Coll Agr & Biotechnol, Hangzhou 310058, Peoples R China
关键词
Salt tolerant; NaCl stress; stress-responsive genes; BETAINE ALDEHYDE DEHYDROGENASE; ENHANCES SALT-TOLERANCE; ABIOTIC STRESS; OVEREXPRESSION; GLYCINEBETAINE; CHLOROPLASTS; SEEDLINGS; WHEAT;
D O I
10.32604/phyton.2022.022742
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cultivating salt-tolerant crops is a feasible way to effectively utilize saline-alkali land and solve the problem of underutilization of saline soils. Quinoa, a protein-comprehensive cereal in the plant kingdom, is an exceptional crop in terms of salt stress tolerance level. It seems an excellent model for the exploration of salt-tolerance mechanisms and cultivation of salt-tolerant germplasms. In this study, the seeds and seedlings of the quinoa cul-tivar Shelly were treated with different concentrations of NaCl solution. The physiological, biochemical charac-teristics and agronomic traits were investigated, and the response patterns of three salt stress-responsive genes (SSRGs) in quinoa were determined by real-time PCR. The optimum level of stress tolerance of quinoa cultivar Shelly was found in the range of 250-350 mM concentration of NaCl. Salt stress significantly induced expression of superoxide dismutase (SOD), peroxidase (POD), and particularly betaine aldehyde dehydrogenase (BADH). BADH was discovered to be more sensitive to salt stress and played an important role in the salt stress tolerance of quinoa seedlings, particularly at high NaCl concentrations, as it displayed upregulation until 24 h under 100 mM salt treatment. Moreover, it showed upregulation until 12 h under 250 mM salt stress. Taken together, these results suggest that BADH played an essential role in the salt-tolerance mechanism of quinoa. Based on the expression level and prompt response induced by NaCl, we suggest that the BADH can be considered as a mole-cular marker for screening salt-tolerant quinoa germplasm at the early stages of crop development. Salt treatment at different plant ontogeny or at different concentrations had a significant impact on quinoa growth. Therefore, an appropriate treatment approach needs to be chosen rationally in the process of screening salt-tolerant quinoa germplasm, which is useful to the utilization of saline soils. Our study provides a fundamental information to deepen knowledge of the salt tolerance mechanism of quinoa for the development of salt-tolerant germplasm in crop breeding programs.
引用
收藏
页码:399 / 410
页数:12
相关论文
共 50 条
  • [1] Physiological and Biochemical Responses of Quinoa (Chenopodium Quinoa Willd) Varieties to Salinity Stress
    Sabzevar, Tahmineh Esfandiyari
    Tatari, Maryam
    Khosroyar, Sosan
    Gharat, Fereshteh
    Salehi, Masoumeh
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2023, 42 (11): : 3824 - 3834
  • [2] Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress
    Parvez, Shumaila
    Abbas, Ghulam
    Shahid, Muhammad
    Amjad, Muhammad
    Hussain, Munawar
    Asad, Saeed Ahmad
    Imran, Muhammad
    Naeem, Muhammad Asif
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 187
  • [3] Physiological, Biochemical, and Molecular Responses of Quinoa (Chenopodium quinoa Willd.) to Elicitors Under Drought Stress
    Forouzandeh, Mohamad
    Parsa, Soheil
    Mahmoodi, Sohrab
    Izanloo, Ali
    PLANT MOLECULAR BIOLOGY REPORTER, 2024, 42 (03) : 515 - 531
  • [4] Compost and Humic Acid Mitigate the Salinity Stress on Quinoa (Chenopodium quinoa Willd L.) and Improve Some Sandy Soil Properties
    Rekaby, Saudi A.
    AL-Huqail, Arwa Abdulkreem
    Gebreel, Mostafa
    Alotaibi, Sami S.
    Ghoneim, Adel M.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (02) : 2651 - 2661
  • [5] Compost and Humic Acid Mitigate the Salinity Stress on Quinoa (Chenopodium quinoa Willd L.) and Improve Some Sandy Soil Properties
    Saudi A. Rekaby
    Arwa Abdulkreem AL-Huqail
    Mostafa Gebreel
    Sami S. Alotaibi
    Adel M. Ghoneim
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 2651 - 2661
  • [6] Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability
    Iftikhar Hussain, M.
    Al-Dakheel, Abdullah J.
    Reigosa, Manuel J.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 129 : 411 - 420
  • [7] Physiological, biochemical, and functional changes in quinoa (Chenopodium quinoa Willd) under potassium and zinc applications in drought stress conditions
    Zahmatkesh, Yaser
    Souhani, Alireza
    Pessarakli, Mohammad
    JOURNAL OF PLANT NUTRITION, 2024, 47 (19) : 3622 - 3645
  • [8] Effect of Spermidine and Salicylic Acid Application on the Morphological and Physiological Characteristics of Quinoa (Chenopodium quinoa) Under Salt Stress Conditions
    Reisizadeh, Alireza
    Amerian, Mohammadreza
    Gholami, Ahmad
    AGRICULTURAL RESEARCH, 2024, 13 (03) : 450 - 464
  • [9] Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation
    Maria Aslam
    Mbarki Sonia
    Ghulam Abbas
    Muhammad Shahid
    Behzad Murtaza
    Muhmmad Shafique Khalid
    Saeed Ahmad Qaisrani
    Hesham F. Alharby
    Sameera A. Alghamdi
    Basmah M. Alharbi
    Yinglong Chen
    Environmental Science and Pollution Research, 2023, 30 : 99247 - 99259
  • [10] Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation
    Aslam, Maria
    Sonia, Mbarki
    Abbas, Ghulam
    Shahid, Muhammad
    Murtaza, Behzad
    Khalid, Muhmmad Shafique
    Qaisrani, Saeed Ahmad
    Alharby, Hesham F.
    Alghamdi, Sameera A.
    Alharbi, Basmah M.
    Chen, Yinglong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (44) : 99247 - 99259