The Cauchy problem for Laplace's equation via a modified conjugate gradient method and energy space approaches

被引:0
作者
Amdouni, Saber [1 ]
Ben Abda, Amel [1 ]
机构
[1] Univ Tunis El Manar, Natl Engn Sch Tunis, Lab Math & Numer Modeling Engn Sci, LAMSIN, LR99ES20, Tunis, Tunisia
关键词
Cauchy problem; energy space approaches; conjugate gradient method; finite element method; Laplace problem;
D O I
10.1002/mma.8710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, we focus on the resolution of the Cauchy Laplace problem using an energetic variational minimization approach in the framework of a finite element method. A new strategy of regularization, called a filtering procedure regularization, is developed. The advantage of using this new regularization is that it does not require a regularization parameter and is easy to implement. An optimal a priori error estimate is proven, for the first time up to our knowledge, in the context of the finite element method. Some numerical results are presented to illustrate the performance of our approach.
引用
收藏
页码:3560 / 3582
页数:23
相关论文
共 20 条
  • [1] Solving Cauchy problems by minimizing an energy-like functional
    Andrieux, S
    Baranger, TN
    Ben Abda, A
    [J]. INVERSE PROBLEMS, 2006, 22 (01) : 115 - 133
  • [2] On Cauchy's problem: I. A variational Steklov-Poincare theory
    Ben Belgacem, F
    El Fekih, H
    [J]. INVERSE PROBLEMS, 2005, 21 (06) : 1915 - 1936
  • [3] A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation
    Bourgeois, L
    [J]. INVERSE PROBLEMS, 2005, 21 (03) : 1087 - 1104
  • [4] A MIXED FORMULATION OF THE TIKHONOV REGULARIZATION AND ITS APPLICATION TO INVERSE PDE PROBLEMS
    Bourgeois, Laurent
    Recoquillay, Arnaud
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01): : 123 - 145
  • [5] Ciarlet P. G., 1978, FINITE ELEMENT METHO
  • [6] Solution of the Cauchy problem using iterated Tikhonov regularization
    Cimetière, A
    Delvare, F
    Jaoua, M
    Pons, F
    [J]. INVERSE PROBLEMS, 2001, 17 (03) : 553 - 570
  • [7] Daniell PJ., 1924, MATH GAZ, V12, P173, DOI [10.2307/3603014, DOI 10.2307/3603014]
  • [8] An iterative boundary element method for Cauchy inverse problems
    Delvare, F
    Cimetière, A
    Pons, F
    [J]. COMPUTATIONAL MECHANICS, 2002, 28 (3-4) : 291 - 302
  • [9] Hào DN, 2010, J ALGORITHMS COMPUT, V4, P89, DOI 10.1260/1748-3018.4.1.89
  • [10] Ern A., 2013, THEORY PRACTICE FINI