The element-free Galerkin method for the variational-hemivariational inequality of the dynamic Signorini-Tresca contact problems with friction in elastic materials

被引:0
作者
Shen, Quan [1 ]
Ding, Rui [2 ]
Yao, Yuan [2 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 116卷
基金
中国国家自然科学基金;
关键词
Element -free Galerkin method; Moving least -squares approximation; Penalty method; Variational-hemivariational inequalities; NUMERICAL-ANALYSIS; MESHLESS METHOD; ERROR ANALYSIS; EQUATION; PROPAGATION; FRACTURE;
D O I
10.1016/j.cnsns.2022.106816
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The element-free Galerkin method is presented for the variational-hemivariational inequality of the dynamic Signorini-Tresca contact problems with friction in elastic materials. The Dirichlet boundary conditions and the constrained conditions are imposed by the penalty method. The error estimates of the element-free Galerkin method indicate that the convergence order depends on the spatial step, the time step, the largest degree of basis functions in the moving least-squares approximation and the penalty factor. Numerical examples verify our theoretical results. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 40 条
[21]   Analysis of a general dynamic history-dependent variational hemivariational inequality [J].
Han, Weimin ;
Migorski, Stanislaw ;
Sofonea, Mircea .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 :69-88
[22]  
Kikuchi N, 1988, CONTACT PROBLEMS ELA, V8
[23]  
LANCASTER P, 1981, MATH COMPUT, V37, P141, DOI 10.1090/S0025-5718-1981-0616367-1
[24]   Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces [J].
Li, Xiaolin .
APPLIED NUMERICAL MATHEMATICS, 2016, 99 :77-97
[25]   Research on rigid/visco-plastic element-free Galerkin method and key simulation techniques for three-dimensional bulk metal forming processes [J].
Lu, Ping ;
Zhao, Guoqun ;
Guan, Yanjin ;
Wu, Xin .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 53 (5-8) :485-503
[26]   ELEMENT-FREE GALERKIN METHOD FOR WAVE-PROPAGATION AND DYNAMIC FRACTURE [J].
LU, YY ;
BELYTSCHKO, T ;
TABBARA, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 126 (1-2) :131-153
[27]   Variational-hemivariational inequality for a class of dynamic nonsmooth frictional contact problems [J].
Migorski, Stanislaw ;
Gamorski, Piotr .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 :465-479
[28]   Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact [J].
Migorski, Stanislaw ;
Zeng, Shengda .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (08) :1503-1520
[29]   A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces [J].
Migorski, Stanislaw ;
Ochal, Anna ;
Sofonea, Mircea .
JOURNAL OF ELASTICITY, 2017, 127 (02) :151-178
[30]   History-dependent variational-hemivariational inequalities in contact mechanics [J].
Migorski, Stanislaw ;
Ochal, Anna ;
Sofonea, Mircea .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :604-618