The element-free Galerkin method for the variational-hemivariational inequality of the dynamic Signorini-Tresca contact problems with friction in elastic materials

被引:0
作者
Shen, Quan [1 ]
Ding, Rui [2 ]
Yao, Yuan [2 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 116卷
基金
中国国家自然科学基金;
关键词
Element -free Galerkin method; Moving least -squares approximation; Penalty method; Variational-hemivariational inequalities; NUMERICAL-ANALYSIS; MESHLESS METHOD; ERROR ANALYSIS; EQUATION; PROPAGATION; FRACTURE;
D O I
10.1016/j.cnsns.2022.106816
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The element-free Galerkin method is presented for the variational-hemivariational inequality of the dynamic Signorini-Tresca contact problems with friction in elastic materials. The Dirichlet boundary conditions and the constrained conditions are imposed by the penalty method. The error estimates of the element-free Galerkin method indicate that the convergence order depends on the spatial step, the time step, the largest degree of basis functions in the moving least-squares approximation and the penalty factor. Numerical examples verify our theoretical results. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 40 条
[1]   Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
APPLIED NUMERICAL MATHEMATICS, 2020, 150 :274-294
[2]   Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique [J].
Alvarez Hostos, J. C. ;
Bencomo, A. D. ;
Cabrera, E. S. Puchi ;
Guerin, J. D. ;
Dubar, L. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 103 :119-142
[3]   CRACK-PROPAGATION BY ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
ENGINEERING FRACTURE MECHANICS, 1995, 51 (02) :295-315
[4]  
Belytschko T, 1996, INT J NUMER METH ENG, V39, P923, DOI 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO
[5]  
2-W
[6]   FRACTURE AND CRACK-GROWTH BY ELEMENT FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
GU, L ;
LU, YY .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (3A) :519-534
[7]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[8]   Space adaptive finite element methods for dynamic Signorini problems [J].
Blum, Heribert ;
Rademacher, Andreas ;
Schroeder, Andreas .
COMPUTATIONAL MECHANICS, 2009, 44 (04) :481-491
[9]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[10]   The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model [J].
Dehghan, Mehdi ;
Narimani, Niusha .
ENGINEERING WITH COMPUTERS, 2020, 36 (04) :1517-1537