One-pot production of tagatose using L-arabinose isomerase from Thermotoga maritima and β-galactosidase from Aspergillus oryzae

被引:9
作者
Aburto, Carla [1 ]
Vera, Carlos [2 ]
Arenas, Felipe [2 ]
Illanes, Andres
Guerrero, Cecilia [1 ]
机构
[1] Pontificia Univ Catolica Valparaiso PUCV, Sch Biochem Engn, Ave Brasil 2085, Valparaiso, Chile
[2] Univ Santiago De Chile USACH, Fac Chem & Biol, Dept Biol, Ave Libertador Bernardo OHiggins 3363,Estn Cent, Santiago, Chile
关键词
L-arabinose isomerase; beta-galactosidase; Thermotoga maritima; One; -pot; GEOBACILLUS-STEAROTHERMOPHILUS; KLUYVEROMYCES-LACTIS; IMMOBILIZATION; BIOPRODUCTION; STRATEGY; LACTOSE; WHEY; PH;
D O I
10.1016/j.lwt.2024.115787
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The one -pot production of tagatose from lactose using recombinant L-arabinose isomerase (L -AI) from Thermotoga maritima and commercial beta-galactosidase (beta-gal) from Aspergillus oryzae was evaluated. The beta-gal and L -AI ratio (R (beta-gal/L-AI)), initial lactose concentration and temperature were chosen as study variables. Maximum values of tagatose yield (Y-Tag), specific tagatose productivity (pi(Tag)) and sugars ratio (R-Tag/(Gal)) obtained were 23 %, 0.202 +/- 0.03 mmol Tag/(g prot & sdot;h) and 1, respectively. The composition of the product on a dry basis was as follows (g/ g): 0.23 tagatose, 0.232 galactose, 0.454 glucose, 0.043 fructose, 0.029 lactose and 0.012 GOS. The one -pot production was superior compared with a sequential operation, where values of 16.5 %, 0.11 mmol Tag/(g prot & sdot;h) and 0.59 were obtained for Y-Tag, pi(Tag) and R-Tag/(Gal), respectively.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials [J].
Ahmed, Amna ;
Khan, Tauseef A. ;
Ramdath, D. Dan ;
Kendall, Cyril W. C. ;
Sievenpiper, John L. .
NUTRITION REVIEWS, 2022, 80 (02) :255-270
[2]   Biotechnological application of Aspergillus oryzae/3-galactosidase immobilized on glutaraldehyde modified zinc oxide nanoparticles [J].
Ansari, Shakeel Ahmed ;
Damanhory, Ahmed Abdelghany .
HELIYON, 2023, 9 (02)
[3]   Galactose to tagatose isomerization at moderate temperatures with high conversion and productivity [J].
Bober, Josef R. ;
Nair, Nikhil U. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Stabilization of immobilizedl-arabinose isomerase for the production ofd-tagatose fromd-galactose [J].
Bortone, Nadia ;
Fidaleo, Marcello .
BIOTECHNOLOGY PROGRESS, 2020, 36 (06)
[5]   Lactose hydrolysis potential and thermal stability of commercial β-galactosidase in UHT and skimmed milk [J].
Bosso, Alessandra ;
Ito Morioka, Luiz Rodrigo ;
dos Santos, Leandro Freire ;
Suguimoto, Helio Hiroshi .
FOOD SCIENCE AND TECHNOLOGY, 2016, 36 (01) :159-165
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   The Rare Sugar Tagatose Differentially Inhibits the Growth of Phytophthora infestans and Phytophthora cinnamomi by Interfering With Mitochondrial Processes [J].
Chahed, Abdessalem ;
Nesler, Andrea ;
Navazio, Lorella ;
Baldan, Barbara ;
Busato, Isabella ;
Ait Barka, Essaid ;
Pertot, Ilaria ;
Puopolo, Gerardo ;
Perazzolli, Michele .
FRONTIERS IN MICROBIOLOGY, 2020, 11
[8]   Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus:: Possible structural determinants of thermostability [J].
Chang, CS ;
Park, BC ;
Lee, DS ;
Suh, SW .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (04) :623-634
[9]   An L-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: cloning, expression, purification, and characterization [J].
Cheng, Lifang ;
Mu, Wanmeng ;
Zhang, Tao ;
Jiang, Bo .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 86 (04) :1089-1097
[10]  
Cheng SY, 2020, SCI REP-UK, V10, DOI [10.1038/s41598-020-74710-9, 10.1038/s41598-020-59704-x]