Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells

被引:5
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [2 ,3 ,4 ]
Chen, Zuyan [2 ,3 ,4 ]
Shen, Shuang [2 ,3 ,4 ]
Yang, Jinpeng [1 ]
Xu, Wei [2 ,3 ]
Kang, Kai [2 ,3 ,4 ]
Sun, Tao [1 ]
Xiang, Chaoyu [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[2] CNITECH, Lab Adv Nanooptoelect Mat & Devices, Qianwan Inst, Ningbo 315336, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelect Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
active layer; concentration adjustment; liquid-phase ligand exchange; PbS QD solar cell; photovoltaic performance; LIGAND-EXCHANGE; INKS; RECOMBINATION; DYNAMICS;
D O I
10.1002/solr.202400073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The n-type quantum dot (QD) active layer is the core component of lead sulfide QD solar cells (PbS QDSCs). In the state-of-the-art PbS QDSCs, the active layer is commonly obtained through liquid-phase ligand exchange (LPLE). Due to the intricate chemical state of the ligand exchange solution providing halide ligand, therefore, the PbS-OAQD solutions is used at concentrations of 20, 30, and 40 mg mL-1 for LPLE, aiming to investigate the reasons for different surface states post-exchange and their impact on device performance. The results indicate that when the concentration of the PbS-OA QD solution is 30 mg mL-1, the exchanged QDs exhibit complete removal of surface OA, a higher content of short-chain ligand PbX2 (X = I, Br), Consequently, devices fabricated using PbS-PbX2 QD obtained through the exchange of 30 mg mL-1 PbS-OA QD solution achieve a higher power conversion efficiency (PCE) of 12.53%. This study presents a simple and effective strategy to enhance the performance of PbS QDSCs. This study reveals the differences in the surface states of PbS-PbX2 quantum dots obtained through liquid-phase ligand exchange using PbS-OA solutions of different concentrations. It explores the reasons for the formation of these surface states and investigates the impact of different surface states on the photovoltaic parameters of the devices.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Precursor Chemistry Enables the Surface Ligand Control of PbS Quantum Dots for Efficient Photovoltaics
    Wang, Chao
    Wang, Yinglin
    Jia, Yuwen
    Wang, Hai
    Li, Xiaofei
    Liu, Shuai
    Liu, Xinlu
    Zhu, Hongbo
    Wang, Haiyu
    Liu, Yichun
    Zhang, Xintong
    [J]. ADVANCED SCIENCE, 2023, 10 (04)
  • [42] Surface States in Ternary CdSSe Quantum Dot Solar Cells
    Chen, Zhenhua
    Li, Hui
    Zhang, Xiangzhi
    Zhang, Lijuan
    Yu, Huaina
    Li, Wenqin
    Xu, Zijian
    Wang, Yong
    Tai, Renzhong
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (02) : 1373 - 1380
  • [43] High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction
    Kim, Byung-Sung
    Neo, Darren C. J.
    Hou, Bo
    Park, Jong Bae
    Cho, Yuljae
    Zhang, Nanlin
    Hong, John
    Pak, Sangyeon
    Lee, Sanghyo
    Sohn, Jung Inn
    assender, Hazel E.
    Watt, Andrew A. R.
    Cha, SeungNarn.
    Kim, Jong Min
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) : 13902 - 13908
  • [44] Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells
    Zhong, Yuanyuan
    Zhang, Hua
    Pan, Dengyu
    Wang, Liang
    Zhong, Xinhua
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (06) : 722 - 728
  • [45] A Brief Review of Perovskite Quantum Dot Solar Cells: Synthesis, Property and Defect Passivation
    Yang, Zifan
    Liu, Yueli
    Chen, Wen
    [J]. CHEMSUSCHEM, 2025, 18 (03)
  • [46] Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells
    Wei, Yuyao
    Nakamura, Mako
    Ding, Chao
    Liu, Dong
    Li, Hua
    Li, Yusheng
    Yang, Yongge
    Wang, Dandan
    Wang, Ruixiang
    Hayase, Shuzi
    Masuda, Taizo
    Shen, Qing
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (31) : 36268 - 36276
  • [47] Photovoltaic performance enhancement on carbon counter electrode based PbS colloidal quantum dots solar cells with surface trap passivation via post-treatment process
    Wang, Jiangcai
    Huang, Jincheng
    Zhang, Yuanfang
    Zhang, Xinlong
    Gu, Yongjie
    Liao, Kai
    Chen, Jianlin
    Li, Wei
    Peng, Zhuoyin
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 166
  • [48] Colloidal Quantum Dot Solar Cells
    Carey, Graham H.
    Abdelhady, Ahmed L.
    Ning, Zhijun
    Thon, Susanna M.
    Bakr, Osman M.
    Sargent, Edward H.
    [J]. CHEMICAL REVIEWS, 2015, 115 (23) : 12732 - 12763
  • [49] Uncovering the charge transfer and recombination mechanism in ZnS-coated PbS quantum dot sensitized solar cells
    Chang, Jin
    Oshima, Takuya
    Hachiya, Sojiro
    Sato, Konki
    Toyoda, Taro
    Katayama, Kenji
    Hayase, Shuzi
    Shen, Qing
    [J]. SOLAR ENERGY, 2015, 122 : 307 - 313
  • [50] Inorganic metal iodide mediated solution phase surface passivation for quantum dot solar cell
    Tulsani, Srikanth Reddy
    Ganguly, Saptam
    Rath, Arup K.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (17) : 16234 - 16243