Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells

被引:5
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [2 ,3 ,4 ]
Chen, Zuyan [2 ,3 ,4 ]
Shen, Shuang [2 ,3 ,4 ]
Yang, Jinpeng [1 ]
Xu, Wei [2 ,3 ]
Kang, Kai [2 ,3 ,4 ]
Sun, Tao [1 ]
Xiang, Chaoyu [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[2] CNITECH, Lab Adv Nanooptoelect Mat & Devices, Qianwan Inst, Ningbo 315336, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelect Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
active layer; concentration adjustment; liquid-phase ligand exchange; PbS QD solar cell; photovoltaic performance; LIGAND-EXCHANGE; INKS; RECOMBINATION; DYNAMICS;
D O I
10.1002/solr.202400073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The n-type quantum dot (QD) active layer is the core component of lead sulfide QD solar cells (PbS QDSCs). In the state-of-the-art PbS QDSCs, the active layer is commonly obtained through liquid-phase ligand exchange (LPLE). Due to the intricate chemical state of the ligand exchange solution providing halide ligand, therefore, the PbS-OAQD solutions is used at concentrations of 20, 30, and 40 mg mL-1 for LPLE, aiming to investigate the reasons for different surface states post-exchange and their impact on device performance. The results indicate that when the concentration of the PbS-OA QD solution is 30 mg mL-1, the exchanged QDs exhibit complete removal of surface OA, a higher content of short-chain ligand PbX2 (X = I, Br), Consequently, devices fabricated using PbS-PbX2 QD obtained through the exchange of 30 mg mL-1 PbS-OA QD solution achieve a higher power conversion efficiency (PCE) of 12.53%. This study presents a simple and effective strategy to enhance the performance of PbS QDSCs. This study reveals the differences in the surface states of PbS-PbX2 quantum dots obtained through liquid-phase ligand exchange using PbS-OA solutions of different concentrations. It explores the reasons for the formation of these surface states and investigates the impact of different surface states on the photovoltaic parameters of the devices.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Cascaded band alignments of PbS heterojunction layers for improved performance of PbS quantum dot solar cells
    Park, Dasom
    Yim, Sanggyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 208
  • [32] Enhanced performance of all solid-state quantum dot-sensitized solar cells via synchronous deposition of PbS and CdS quantum dots
    Mao, Xiaoli
    Yu, Jianguo
    Xu, Jun
    Zhou, Juntian
    Luo, Cheng
    Wang, Lang
    Niu, Haihong
    Xu, Jinzhang
    Zhou, Ru
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (02) : 505 - 512
  • [33] Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells
    Solis de la Fuente, Mauricio
    Sanchez, Rafael S.
    Gonzalez-Pedro, Victoria
    Boix, Pablo P.
    Mhaisalkar, S. G.
    Rincon, Marina E.
    Bisquert, Juan
    Mora-Sero, Ivan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (09): : 1519 - 1525
  • [34] Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices
    Zhang, Yaohong
    Wu, Guohua
    Liu, Feng
    Ding, Chao
    Zou, Zhigang
    Shen, Qing
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (01) : 49 - 84
  • [35] The effects of PbS quantum dot surface contributing to their properties
    Yang, Kai
    Huang, Wuhua
    Chen, Can
    Tan, Weijie
    Peng, Jie
    Tian, Junlong
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [36] Strong Coupling of Colloidal Quantum Dots via Self-Assemble Passivation for Efficient Infrared Solar Cells
    Zheng, Siyu
    Wang, Yunfei
    Jia, Donglin
    Tian, Lei
    Chen, Jingxuan
    Shan, Lianwei
    Dong, Limin
    Zhang, Xiaoliang
    ADVANCED MATERIALS INTERFACES, 2021, 8 (13)
  • [37] Rejuvenating Aged Perovskite Quantum Dots for Efficient Solar Cells
    Chen, Jingxuan
    Jia, Donglin
    Zhuang, Rongshan
    Hua, Yong
    Zhang, Xiaoliang
    ADVANCED MATERIALS, 2024, 36 (01)
  • [38] Colloidal PbS and PbSeS Quantum Dot Sensitized Solar Cells Prepared by Electrophoretic Deposition
    Benehkohal, Nima Parsi
    Gonzalez-Pedro, Victoria
    Boix, Pablo P.
    Chavhan, Sudam
    Tena-Zaera, Ramon
    Demopoulos, George P.
    Mora-Sero, Ivan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (31) : 16391 - 16397
  • [39] Gains and Losses in PbS Quantum Dot Solar Cells with Submicron Periodic Grating Structures
    Hara, Yukihiro
    Gadisa, Abay
    Fu, Yulan
    Garvey, Timothy
    Vrouwenvelder, Kristina T.
    Miller, Christopher W.
    Dempsey, Jillian L.
    Lopez, Rene
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (15) : 8005 - 8013
  • [40] Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode
    Kim, Byung-Man
    Son, Min-Kyu
    Kim, Soo-Kyoung
    Hong, Na-Yeong
    Park, Songyi
    Jeong, Myeong-Soo
    Seo, Hyunwoong
    Prabakar, Kandasamy
    Kim, Hee-Je
    ELECTROCHIMICA ACTA, 2014, 117 : 92 - 98