An Alternative to Chlorobenzene as a Hole Transport Materials Solvent for High-Performance Perovskite Solar Cells

被引:3
作者
Lee, Seung Ho [1 ]
Lim, Seong Bin [2 ]
Kim, Jin Young [1 ]
Lee, Seri [2 ]
Oh, Se Young [2 ]
Kim, Gyu Min [1 ]
机构
[1] Hankyong Natl Univ, Fac Food Biotechnol & Chem Engn, Anseong 17579, South Korea
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul 04107, South Korea
关键词
perovskite solar cell; hole transport materials; low cost; high performance; HALIDE PEROVSKITES; HIGH-EFFICIENCY; SPIRO-OMETAD; LAYER;
D O I
10.3390/cryst13121667
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Spiro-OMeTAD is a widely used hole-transporting layer (HTL) material, characterized by high hole mobility and good film-forming properties, in perovskite solar cells (PSCs). However, this material has high synthesis costs, low solubility, dependence on hygroscopic dopants, and a low commercial potential. Recently, we investigated alternative materials with good solubility, simple synthetic methods, and good electrical characteristics for use as hole transport materials (HTM) in triple-cation PSCs. Herein, (E,E,E,E)-4,4 ',4 '',4 '''-[Benzene-1,2,4,5-tetrayltetrakis(ethene-2,1-diyl)]tetrakis[N,N-bis(4-methoxyphenyl)aniline], which has a small molecular weight and similar properties to Spiro-OMeTAD, was assessed for use as a HTM via a pre-test of device performance, including its electrical properties, surface morphology, and coating process method, with PSC efficiencies routinely surpassing 20%. A remarkable open-circuit voltage of 1.111, along with a photovoltaic efficiency of 20.18% was obtained in PSCs using this HTM with dichloromethane (DCM) instead of chlorobenzene, indicative of its potential for the fabrication of resistance components with improved surface uniformity. These results provide insights into DCM as an efficient solvent for small molecule-based HTM.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Two-dimensional MXene incorporating for electron and hole transport in high-performance perovskite solar cells
    Aftab, Sikandar
    Abbas, Aumber
    Iqbal, Muhammad Zahir
    Hussain, Sajjad
    Kabir, Fahmid
    Hegazy, Hosameldin Helmy
    Xu, Fan
    Kim, Jae Hong
    Goud, Burragoni Sravanthi
    MATERIALS TODAY ENERGY, 2023, 36
  • [42] Management of Donor and Acceptor Building Blocks in Dopant-Free Polymer Hole Transport Materials for High-Performance Perovskite Solar Cells
    Fu, Qiang
    Liu, Hang
    Li, Shitong
    Zhou, Tong
    Chen, Mingqian
    Yang, Yang
    Wang, Jian
    Wang, Rui
    Chen, Yongsheng
    Liu, Yongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (43)
  • [43] High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells
    Azmi, Randi
    Nam, So Youn
    Sinaga, Septy
    Akbar, Zico Alaia
    Lee, Chang-Lyoul
    Yoon, Sung Cheol
    Jung, In Hwan
    Jang, Sung-Yeon
    NANO ENERGY, 2018, 44 : 191 - 198
  • [44] Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells
    Xianglang Sun
    Zonglong Zhu
    Zhong’an Li
    Frontiers of Optoelectronics, 2022, 15
  • [45] Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells
    Sharmoukh, Walid
    Al Kiey, Sherief A.
    Ali, Basant A.
    Menon, Latika
    Allam, Nageh K.
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 26
  • [46] Heterocyclic and heteropolycyclic moieties in organic hole transport materials for perovskite solar cells: Design, synthesis, and performance
    Afraj, Shakil N.
    Velusamy, Arulmozhi
    Chen, Ming-Chou
    Abd-Ellah, Marwa
    Abdelhady, Ahmed L.
    COORDINATION CHEMISTRY REVIEWS, 2025, 532
  • [47] Inorganic top electron transport layer for high performance inverted perovskite solar cells
    Yang, Boping
    Peng, Simin
    Choy, Wallace C. H.
    ECOMAT, 2021, 3 (05)
  • [48] A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells
    Kung, Po-Kai
    Li, Ming-Hsien
    Lin, Pei-Ying
    Chiang, Yu-Hsien
    Chan, Chia-Ru
    Guo, Tzung-Fang
    Chen, Peter
    ADVANCED MATERIALS INTERFACES, 2018, 5 (22):
  • [49] Hole transport materials for perovskite solar cells: A computational study
    Naqvi, Sheerin
    Patra, Asit
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 258
  • [50] New Helicene-Type Hole-Transporting Molecules for High-Performance and Durable Perovskite Solar Cells
    Lin, Yeo-Sin
    Abate, Seid Yimer
    Lai, Kuan-Wen
    Chu, Chih-Wei
    Lin, Yan-Duo
    Tao, Yu-Tai
    Sun, Shih-Sheng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (48) : 41439 - 41449