A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress

被引:11
作者
Wang, Baoxiang [1 ]
Sun, Zhiguang [1 ]
Liu, Yan [1 ]
Xu, Bo [1 ]
Li, Jingfang [1 ]
Chi, Ming [1 ]
Xing, Yungao [1 ]
Yang, Bo [1 ]
Li, Jian [1 ]
Liu, Jinbo [1 ]
Chen, Tingmu [1 ]
Fang, Zhaowei [1 ]
Lu, Baiguan [1 ]
Xu, Dayong [1 ]
Bello, Babatunde Kazeem [1 ]
机构
[1] Lianyungang Inst Agr Sci, Collaborat Innovat Ctr Modern Crop Prod, Lianyungang 222006, Jiangsu, Peoples R China
关键词
Transcription factor; Phosphorylation; Abiotic; Kinases; Protein; ACTIVATED PROTEIN-KINASE; ABA SIGNAL-TRANSDUCTION; ELEMENT-BINDING FACTOR; WATER-DEFICIT STRESS; DNA-BINDING; ARABIDOPSIS-THALIANA; DROUGHT TOLERANCE; LOW-TEMPERATURE; FACTOR FAMILY; FREEZING TOLERANCE;
D O I
10.1007/s00425-023-04232-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Main conclusionTranscriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress.AbstractAbiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
引用
收藏
页数:14
相关论文
共 156 条
[1]   WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana [J].
Adachi, Hiroaki ;
Nakano, Takaaki ;
Miyagawa, Noriko ;
Ishihama, Nobuaki ;
Yoshioka, Miki ;
Katou, Yuri ;
Yaeno, Takashi ;
Shirasu, Ken ;
Yoshioka, Hirofumi .
PLANT CELL, 2015, 27 (09) :2645-2663
[2]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[3]   Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity [J].
Agarwal, Parinita ;
Agarwal, Pradeep K. ;
Nair, Suresh ;
Sopory, S. K. ;
Reddy, M. K. .
MOLECULAR GENETICS AND GENOMICS, 2007, 277 (02) :189-198
[4]   Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes [J].
Agarwal, Parinita ;
Agarwal, Pradeep K. ;
Joshi, Arvind J. ;
Sopory, Sudhir K. ;
Reddy, Malireddy K. .
MOLECULAR BIOLOGY REPORTS, 2010, 37 (02) :1125-1135
[5]   Plant molecular stress responses face climate change [J].
Ahuja, Ishita ;
de Vos, Ric C. H. ;
Bones, Atle M. ;
Hall, Robert D. .
TRENDS IN PLANT SCIENCE, 2010, 15 (12) :664-674
[6]   DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants [J].
Akhtar, M. ;
Jaiswal, A. ;
Taj, G. ;
Jaiswal, J. P. ;
Qureshi, M. I. ;
Singh, N. K. .
JOURNAL OF GENETICS, 2012, 91 (03) :385-395
[7]   Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco [J].
Araki, S ;
Ito, M ;
Soyano, T ;
Nishihama, R ;
Machida, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (31) :32979-32988
[8]   Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement [J].
Baillo, Elamin Hafiz ;
Kimotho, Roy Njoroge ;
Zhang, Zhengbin ;
Xu, Ping .
GENES, 2019, 10 (10)
[9]   Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling [J].
Bethke, Gerit ;
Unthan, Tino ;
Uhrig, Joachim F. ;
Poeschl, Yvonne ;
Gust, Andrea A. ;
Scheel, Dierk ;
Lee, Justin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (19) :8067-8072
[10]  
Bhadouria R., 2019, Climate Change and Agricultural Ecosystems, P1, DOI DOI 10.1016/B978-0-12-816483-9.00001-3