MODELING AND OPTIMIZATION OF AN INTERVAL TYPE 2 FUZZY LOGIC SYSTEM FOR A CERAMIC COATING PROCESS

被引:0
作者
Daniel Olvera-Romero, Gerardo [1 ,3 ]
Javier Praga-Alejo, Rolando [1 ,2 ]
Salvador Gonzalez-Gonzalez, David [2 ]
机构
[1] Corp Mexicana Invest Mat COMIMSA, Calle Ciencia & Tecnol, Saltillo, Coahuila, Mexico
[2] Univ Autonoma Coahuila, Fac Sistemas, Ciudad Univ, Saltillo, Coahuila, Mexico
[3] Univ Autonoma Coahuila, Fac Ingn, Ciudad Univ, Saltillo, Coahuila, Mexico
来源
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE | 2023年 / 30卷 / 04期
关键词
Interval Type 2 Fuzzy Logic; Genetic Algorithm; Modeling; Ceramic Coating Process; REDUCTION; CONTROLLER; ALGORITHM; UNCERTAINTY; FOOTPRINTS; DESIGN; SETS; PI;
D O I
10.23055/ijietap.2023.30.4.8973
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process control is essential in Industry 4.0, and process modeling is an effective way to achieve it. For complex processes with high variability and uncertainty, Interval Type 2 Fuzzy Logic Systems are an efficient alternative, but they lack an appropriate methodology for selecting the Footprint of Uncertainty width. This work proposes a method that uses a genetic algorithm to optimize the Footprint of Uncertainty width and evaluates various Type-Reduction methods. ANOVA and R-2 and R-prediction(2) statistics are used to verify the model, which is applied to a manufacturing process that adjusts the density of a ceramic coating. The results indicate that the optimized model (R-2 = 0.886) outperforms the non-optimized model (R-2 = 0.796), linear regression (R-2= 0.498), and backpropagation neural networks (R-2 = 0.641). Additionally, a stability analysis of the proposed model was performed using cross-validation, obtaining an R-prediction(2) = 0.758, which indicates that the genetic algorithm-based method can be a suitable option for modeling complex processes.
引用
收藏
页码:999 / 1015
页数:17
相关论文
共 50 条
[31]   Adaptive Interval Type-2 Fuzzy Logic Observer for Dynamic Positioning [J].
Chen, Xue Tao ;
Tan, Woei Wan .
2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
[32]   The Discussion on Interval Type-2 Fuzzy Logic Controller with Stewart Platform [J].
Huang, Chin-I ;
Shen, Meng-Shiuan .
2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
[33]   On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems [J].
Biglarbegian, Mohammad ;
Melek, William W. ;
Mendel, Jerry M. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03) :798-818
[34]   A fast learning method for data-driven design of interval type-2 fuzzy logic system [J].
Li, Chengdong ;
Zhang, Guiqing ;
Yi, Jianqiang ;
Shang, Fang ;
Gao, Junlong .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (03) :2705-2715
[35]   Multi-Output Interval Type-2 Fuzzy Logic System for Protein Secondary Structure Prediction [J].
Thanh Nguyen ;
Khosravi, Abbas ;
Creighton, Douglas ;
Nahavandi, Saeid .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2015, 23 (05) :735-760
[36]   Performance analysis of optimal hybrid novel interval type-2 fractional order fuzzy logic controllers for fractional order systems [J].
Kumar, Anupam ;
Kumar, Vijay .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 93 :435-455
[37]   Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic [J].
Olivas, Frumen ;
Valdez, Fevrier ;
Castillo, Oscar ;
Melin, Patricia .
SOFT COMPUTING, 2016, 20 (03) :1057-1070
[38]   Interval type-2 fuzzy logic based antenatal care system using phonocardiography [J].
Chourasia, Vijay S. ;
Tiwari, Anil Kumar ;
Gangopadhyay, Ranjan .
APPLIED SOFT COMPUTING, 2014, 14 :489-497
[39]   OPTIMAL INTERVAL TYPE-2 FUZZY LOGIC CONTROLLER FOR PNEUMATIC SERVO ACTUATOR SYSTEM [J].
Hasan, Amjad F. ;
Abdulridha, Azhar J. .
JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (03) :1644-1660
[40]   Interval type-2 fuzzy logic system based similarity evaluation for image steganography [J].
Ashraf, Zubair ;
Roy, Mukul Lata ;
Muhuri, Pranab K. ;
Lohani, Q. M. Danish .
HELIYON, 2020, 6 (05)