MODELING AND OPTIMIZATION OF AN INTERVAL TYPE 2 FUZZY LOGIC SYSTEM FOR A CERAMIC COATING PROCESS

被引:0
作者
Daniel Olvera-Romero, Gerardo [1 ,3 ]
Javier Praga-Alejo, Rolando [1 ,2 ]
Salvador Gonzalez-Gonzalez, David [2 ]
机构
[1] Corp Mexicana Invest Mat COMIMSA, Calle Ciencia & Tecnol, Saltillo, Coahuila, Mexico
[2] Univ Autonoma Coahuila, Fac Sistemas, Ciudad Univ, Saltillo, Coahuila, Mexico
[3] Univ Autonoma Coahuila, Fac Ingn, Ciudad Univ, Saltillo, Coahuila, Mexico
来源
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE | 2023年 / 30卷 / 04期
关键词
Interval Type 2 Fuzzy Logic; Genetic Algorithm; Modeling; Ceramic Coating Process; REDUCTION; CONTROLLER; ALGORITHM; UNCERTAINTY; FOOTPRINTS; DESIGN; SETS; PI;
D O I
10.23055/ijietap.2023.30.4.8973
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process control is essential in Industry 4.0, and process modeling is an effective way to achieve it. For complex processes with high variability and uncertainty, Interval Type 2 Fuzzy Logic Systems are an efficient alternative, but they lack an appropriate methodology for selecting the Footprint of Uncertainty width. This work proposes a method that uses a genetic algorithm to optimize the Footprint of Uncertainty width and evaluates various Type-Reduction methods. ANOVA and R-2 and R-prediction(2) statistics are used to verify the model, which is applied to a manufacturing process that adjusts the density of a ceramic coating. The results indicate that the optimized model (R-2 = 0.886) outperforms the non-optimized model (R-2 = 0.796), linear regression (R-2= 0.498), and backpropagation neural networks (R-2 = 0.641). Additionally, a stability analysis of the proposed model was performed using cross-validation, obtaining an R-prediction(2) = 0.758, which indicates that the genetic algorithm-based method can be a suitable option for modeling complex processes.
引用
收藏
页码:999 / 1015
页数:17
相关论文
共 50 条
  • [21] Position Control of Servo Drive System Based on Interval Type-2 Fuzzy Logic Algorithm
    Demidova, Galina L.
    Lukichev, Dmitry V.
    2019 26TH INTERNATIONAL WORKSHOP ON ELECTRIC DRIVES: IMPROVEMENT IN EFFICIENCY OF ELECTRIC DRIVES (IWED) PROCEEDINGS, 2019,
  • [22] An Interval Type-2 Fuzzy System with Hybrid Intelligent Learning
    Meesad, Phayung
    2014 4TH WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2014, : 263 - 268
  • [23] Dynamic parameter adaptation in the harmony search algorithm for the optimization of interval type-2 fuzzy logic controllers
    Valdez, Fevrier
    Peraza, Cinthia
    SOFT COMPUTING, 2020, 24 (01) : 179 - 192
  • [24] Applying GA Optimization Algorithm for Interval Type-2 Fuzzy Logic Controller Parameters of Multivariable Anesthesia System
    Taheriyan, Fatemeh
    Ghafourian, Mandana Sadat
    Noori, Amin
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1613 - 1618
  • [25] On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems
    Wu, Dongrui
    Mendel, Jerry M.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (01) : 179 - 192
  • [26] Toward a Fuzzy Logic System Based on General Forms of Interval Type-2 Fuzzy Sets
    Ruiz-Garcia, Gonzalo
    Hagras, Hani
    Pomares, Hector
    Rojas Ruiz, Ignacio
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (12) : 2381 - 2395
  • [27] On the justification to use a novel simplified interval type-2 fuzzy logic system
    Biglarbegian, Mohammad
    Mendel, Jerry M.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (03) : 1071 - 1079
  • [28] A Feasible Genetic Optimization Strategy for Parametric Interval Type-2 Fuzzy Logic Systems
    Tellez-Velazquez, Arturo
    Molina-Lozano, Heron
    Villa-Vargas, Luis A.
    Cruz-Barbosa, Raul
    Lugo-Gonzalez, Esther
    Batyrshin, Ildar Z.
    Rudas, Imre J.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (01) : 318 - 338
  • [29] Optimization of Interval Type-2 Fuzzy Logic Controller Using Quantum Genetic Algorithms
    Shill, Pintu Chandra
    Amin, Md. Faijul
    Akhand, M. A. H.
    Murase, Kazuyuki
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [30] Adaptive Interval Type-2 Fuzzy Logic Observer for Dynamic Positioning
    Chen, Xue Tao
    Tan, Woei Wan
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,