MODELING AND OPTIMIZATION OF AN INTERVAL TYPE 2 FUZZY LOGIC SYSTEM FOR A CERAMIC COATING PROCESS

被引:0
|
作者
Daniel Olvera-Romero, Gerardo [1 ,3 ]
Javier Praga-Alejo, Rolando [1 ,2 ]
Salvador Gonzalez-Gonzalez, David [2 ]
机构
[1] Corp Mexicana Invest Mat COMIMSA, Calle Ciencia & Tecnol, Saltillo, Coahuila, Mexico
[2] Univ Autonoma Coahuila, Fac Sistemas, Ciudad Univ, Saltillo, Coahuila, Mexico
[3] Univ Autonoma Coahuila, Fac Ingn, Ciudad Univ, Saltillo, Coahuila, Mexico
来源
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE | 2023年 / 30卷 / 04期
关键词
Interval Type 2 Fuzzy Logic; Genetic Algorithm; Modeling; Ceramic Coating Process; REDUCTION; CONTROLLER; ALGORITHM; UNCERTAINTY; FOOTPRINTS; DESIGN; SETS; PI;
D O I
10.23055/ijietap.2023.30.4.8973
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process control is essential in Industry 4.0, and process modeling is an effective way to achieve it. For complex processes with high variability and uncertainty, Interval Type 2 Fuzzy Logic Systems are an efficient alternative, but they lack an appropriate methodology for selecting the Footprint of Uncertainty width. This work proposes a method that uses a genetic algorithm to optimize the Footprint of Uncertainty width and evaluates various Type-Reduction methods. ANOVA and R-2 and R-prediction(2) statistics are used to verify the model, which is applied to a manufacturing process that adjusts the density of a ceramic coating. The results indicate that the optimized model (R-2 = 0.886) outperforms the non-optimized model (R-2 = 0.796), linear regression (R-2= 0.498), and backpropagation neural networks (R-2 = 0.641). Additionally, a stability analysis of the proposed model was performed using cross-validation, obtaining an R-prediction(2) = 0.758, which indicates that the genetic algorithm-based method can be a suitable option for modeling complex processes.
引用
收藏
页码:999 / 1015
页数:17
相关论文
共 50 条
  • [1] Application of ANOVA in interval type-2 fuzzy logic systems for modeling the process of ceramic coating preparation in the foundry industry
    Olvera-Romero, Gerardo Daniel
    Praga-Alejo, Rolando
    Rodriguez-Reyes, Mario
    Mancha-Molinar, Hector
    Gonzalez-Gonzalez, David
    Vazquez-Obregon, Dagoberto
    Luna-alvarez, Jesus Salvador
    de Leon-Delgado, Homero
    Flores-Cardenas, Jose
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (7-8): : 3927 - 3938
  • [2] Medical data classification using interval type-2 fuzzy logic system and wavelets
    Thanh Nguyen
    Khosravi, Abbas
    Creighton, Douglas
    Nahavandi, Saeid
    APPLIED SOFT COMPUTING, 2015, 30 : 812 - 822
  • [3] Optimization of Interval Type-2 Intuitionistic Fuzzy Logic System for Prediction Problems
    Eyoh, Imo
    Eyoh, Jeremiah
    Umoh, Uduak
    Kalawsky, Roy
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2021, 20 (04)
  • [4] On the Monotonicity of Interval Type-2 Fuzzy Logic Systems
    Li, Chengdong
    Yi, Jianqiang
    Zhang, Guiqing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1197 - 1212
  • [5] Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Approach for Three-Tank System Modeling
    Maalej, Imen
    Rekik, Chokri
    Ben Halima Abid, Donia
    Derbel, Nabil
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 144 - 149
  • [6] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    Castillo, O.
    Melin, P.
    Alanis, A.
    Montiel, O.
    Sepulveda, R.
    SOFT COMPUTING, 2011, 15 (06) : 1145 - 1160
  • [7] An interval type-2 fuzzy logic system-based method for prediction interval construction
    Khosravi, Abbas
    Nahavandi, Saeid
    APPLIED SOFT COMPUTING, 2014, 24 : 222 - 231
  • [8] Simplified interval type-2 fuzzy logic system based on new type-reduction
    El-Nagar, A. M.
    El-Bardini, M.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (04) : 1999 - 2010
  • [9] Dynamic High-Type Interval Type-2 Fuzzy Logic Control for Photoelectric Tracking System
    Qin, Shuwang
    Zhang, Chao
    Zhao, Tao
    Tong, Wei
    Bao, Qiliang
    Mao, Yao
    PROCESSES, 2022, 10 (03)
  • [10] A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers
    Amador-Angulo, Leticia
    Castillo, Oscar
    SOFT COMPUTING, 2018, 22 (02) : 571 - 594