Optimizing Reservoir Computing Based on an Alternating Input-Driven Spin-Torque Oscillator

被引:2
作者
Wu, Xuezhao [1 ,2 ]
Tong, Zihan [1 ,3 ]
Shao, Qiming [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Clear Water Bay, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, State Key Lab Adv Displays & Optoelect Technol, Clear Water Bay, Hong Kong, Peoples R China
[3] InnoHK Ctr, ACCESS AI Chip Ctr Emerging Smart Syst, Hong Kong Sci Pk, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
[5] Hong Kong Univ Sci & Technol, IAS Ctr Quantum Technol, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Intelligent Mi, Kowloon, Hong Kong, Peoples R China
关键词
EDGE; CHAOS;
D O I
10.1103/PhysRevApplied.20.024069
中图分类号
O59 [应用物理学];
学科分类号
摘要
Neurons in the brain show nonlinear oscillatorlike behaviors, inspiring the development of neuromorphic computing with spin-torque oscillators for their low power consumption and high integration density. The time-multiplexing technique enables utilizing only one device to achieve neuromorphic computing, further reducing power consumption and simplifying device fabrication. However, optimizing such systems remains a challenge and needs further development. A controversial hypothesis claims that dynamic systems possess the optimal computational capacity to address the information at the dynamical phase transition. Here, we apply this hypothesis to improve a reservoir computing system based on an alternating input-driven spin-torque oscillator. The input-driven property of reservoir computing allows us to exploit the dynamics of a spin-torque oscillator by manipulating the input stream. By tuning the ac amplitude in inputs, the system can exhibit diversified dynamic regimes indicated by the largest Lyapunov exponent and echo-state property spectra. Our findings demonstrate that the proper configuration of ac inputs for reservoir computing based on a single spin-torque oscillator can adjust its information-processing capacity profile and enhance its computational performance for specific tasks.
引用
收藏
页数:18
相关论文
共 56 条
  • [1] Neuromorphic computation with a single magnetic domain wall
    Ababei, Razvan V.
    Ellis, Matthew O. A.
    Vidamour, Ian T.
    Devadasan, Dhilan S.
    Allwood, Dan A.
    Vasilaki, Eleni
    Hayward, Thomas J.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Acet M, 2011, HBK MAGN MAT, V19, P231, DOI 10.1016/S1567-2719(11)19004-6
  • [3] Input-driven bifurcations and information processing capacity in spintronics reservoirs
    Akashi, Nozomi
    Yamaguchi, Terufumi
    Tsunegi, Sumito
    Taniguchi, Tomohiro
    Nishida, Mitsuhiro
    Sakurai, Ryo
    Wakao, Yasumichi
    Nakajima, Kohei
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [4] Information processing using a single dynamical node as complex system
    Appeltant, L.
    Soriano, M. C.
    Van der Sande, G.
    Danckaert, J.
    Massar, S.
    Dambre, J.
    Schrauwen, B.
    Mirasso, C. R.
    Fischer, I.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [5] New results on recurrent network training: Unifying the algorithms and accelerating convergence
    Atiya, AF
    Parlos, AG
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 697 - 709
  • [6] The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems
    Balcerzak, Marek
    Pikunov, Danylo
    Dabrowski, Artur
    [J]. NONLINEAR DYNAMICS, 2018, 94 (04) : 3053 - 3065
  • [7] Information Flow in a Kinetic Ising Model Peaks in the Disordered Phase
    Barnett, Lionel
    Lizier, Joseph T.
    Harre, Michael
    Seth, Anil K.
    Bossomaier, Terry
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (17)
  • [8] Real-time computation at the edge of chaos in recurrent neural networks
    Bertschinger, N
    Natschläger, T
    [J]. NEURAL COMPUTATION, 2004, 16 (07) : 1413 - 1436
  • [9] Information processing in echo state networks at the edge of chaos
    Boedecker, Joschka
    Obst, Oliver
    Lizier, Joseph T.
    Mayer, N. Michael
    Asada, Minoru
    [J]. THEORY IN BIOSCIENCES, 2012, 131 (03) : 205 - 213
  • [10] High power and low critical current density spin transfer torque nano-oscillators using MgO barriers with intermediate thickness
    Costa, J. D.
    Serrano-Guisan, S.
    Lacoste, B.
    Jenkins, A. S.
    Bohnert, T.
    Tarequzzaman, M.
    Borme, J.
    Deepak, F. L.
    Paz, E.
    Ventura, J.
    Ferreira, R.
    Freitas, P. P.
    [J]. SCIENTIFIC REPORTS, 2017, 7