An Experimental Study of High-Pressure Microscopy and Enhanced Oil Recovery with Nanoparticle-Stabilised Foams in Carbonate Oil Reservoir

被引:5
作者
Bello, Ayomikun [1 ]
Ivanova, Anastasia [1 ]
Rodionov, Alexander [1 ]
Aminev, Timur [1 ]
Mishin, Alexander [1 ]
Bakulin, Denis [1 ]
Grishin, Pavel [1 ]
Belovus, Pavel [2 ]
Penigin, Artem [2 ]
Kyzyma, Konstantin [3 ]
Cheremisin, Alexey [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Petr Sci & Engn, Moscow 121205, Russia
[2] Gazprom Neft STC LLC, St Petersburg 190000, Russia
[3] Gazprom Neft Orenburg LLC, Orenburg 460000, Russia
关键词
foam; CO2; stability; EOR; high-pressure microscopy; nanoparticles; CO2; FOAM; FLOW; PERFORMANCE; FILMS;
D O I
10.3390/en16135120
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Foams have been successfully implemented to overcome the challenges associated with gas-enhanced oil recovery (EOR) over time. Generally, the foam helps to increase the viscosity of the injected gas, which in turn improves the effectiveness of EOR. However, this technology has rarely been applied in the oilfield due to technological and economical limitations. It is widely considered that nanoparticles may be added to foam to enhance its performance in harsh reservoir conditions to overcome some of these limitations. In this study, we employed high-pressure microscopy (HPM) as an advanced technique to examine the stability of N-2 and CO2 foams at reservoir conditions, both with and without nanoparticles. The experiments were conducted under vapour and supercritical conditions. Our results indicated that foams produced at 80% quality were more stable than foams produced at 50% quality because the bubble size was significantly smaller and the bubble count was higher. Additionally, foams under supercritical conditions (sc) exhibited greater stability than foams under vapour conditions. This is because at supercritical conditions, the high density of gases helps to strengthen the foam lamella by enhancing the intermolecular contacts between the gas and the hydrophobic part of the liquid phase. Furthermore, core flooding studies were performed to investigate their effect on oil displacement and mobility control in both real and artificial core samples. Rather than focusing on precise quantitative results, our objective was to assess the effect of foams on oil recovery qualitatively. The results indicated that foam injection could significantly increase displacement efficiency, as foam injection raised total displacement efficiency from an initial 48.9% to 89.7% in the artificial core sample. Similarly, in the real core model, CO2 foam injection was implemented as a tertiary recovery method, and a recovery factor of 28.91% was obtained. These findings highlight the potential benefits of foams for EOR purposes and their ability to mitigate early gas breakthrough, which was observed after injecting approximately 0.14 PV during scCO(2) injection.
引用
收藏
页数:21
相关论文
共 59 条
[1]   A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection [J].
Afzali, Shokufe ;
Rezaei, Nima ;
Zendehboudi, Sohrab .
FUEL, 2018, 227 :218-246
[2]   Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition [J].
Arain Z.-U.L.-A. ;
Al-Anssari S. ;
Ali M. ;
Memon S. ;
Bhatti M.A. ;
Lagat C. ;
Sarmadivaleh M. .
Petroleum, 2020, 6 (03) :277-285
[3]  
ASGARPOUR S, 1994, J CAN PETROL TECHNOL, V33, P13
[4]   A survey of North Sea enhanced-oil-recovery projects initiated during the years 1975 to 2005 [J].
Awan, A. R. ;
Teigland, R. ;
Kleppe, J. .
SPE RESERVOIR EVALUATION & ENGINEERING, 2008, 11 (03) :497-512
[5]  
Bello A., 2022, P 83 EAGE ANN C EXHI, DOI [10.3997/2214-4609.202210009, DOI 10.3997/2214-4609.202210009]
[6]   Foam EOR as an Optimization Technique for Gas EOR: A Comprehensive Review of Laboratory and Field Implementations [J].
Bello, Ayomikun ;
Ivanova, Anastasia ;
Cheremisin, Alexey .
ENERGIES, 2023, 16 (02)
[7]   Rheological study of nanoparticle-based cationic surfactant solutions [J].
Bello, Ayomikun ;
Ozoani, Joy ;
Adebayo, Adewale ;
Kuriashov, Dmitriy .
PETROLEUM, 2022, 8 (04) :522-528
[8]   Enhancing N2 and CO2 foam stability by surfactants and nanoparticles at high temperature and various salinities [J].
Bello, Ayomikun ;
Ivanova, Anastasia ;
Cheremisin, Alexey .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 215
[9]   Aqueous foams stabilized solely by silica nanoparticles [J].
Binks, BP ;
Horozov, TS .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (24) :3722-3725
[10]   Foaming dynamics in Hele-Shaw cells [J].
Caps, H. ;
Vandewalle, N. ;
Broze, G. .
PHYSICAL REVIEW E, 2006, 73 (06)