GLOBAL HEAT KERNELS FOR PARABOLIC HOMOGENEOUS HORMANDER OPERATORS

被引:1
作者
Biagi, Stefano [1 ]
Bonfiglioli, Andrea [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
DIFFERENTIAL OPERATORS; FUNDAMENTAL-SOLUTIONS; LIOUVILLE THEOREMS; CAUCHY-PROBLEM; VECTOR-FIELDS; UNIQUENESS; PRINCIPLE; SQUARES; SPACES; SUM;
D O I
10.1007/s11856-023-2482-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the existence and several selected properties of a global fundamental Heat kernel Gamma for the parabolic operators H = Sigma(m)(j=1) X-j(2)-partial derivative(t), where X-1,..., X-m are smooth vector fields on R-n satisfying Hormander's rank condition, and enjoying a suitable homogeneity assumption with respect to a family of non-isotropic dilations. The proof of the existence of G is based on a (algebraic) global lifting technique, together with a representation of G in terms of the integral (performed over the lifting variables) of the Heat kernel for the Heat operator associated with a suitable sub-Laplacian on a homogeneous Carnot group. Among the features of G we prove: homogeneity and symmetry properties; summability properties; its vanishing at infinity; the uniqueness of the bounded solutions of the related Cauchy problem; reproduction and density properties; an integral representation for the higher- order derivatives.
引用
收藏
页码:89 / 127
页数:39
相关论文
共 40 条
  • [1] The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups
    Agrachev, Andrei
    Boscain, Ugo
    Gauthier, Jean-Paul
    Rossi, Francesco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) : 2621 - 2655
  • [2] Fundamental solution of a higher step Grushin type operator
    Bauer, Wolfram
    Furutani, Kenro
    Iwasaki, Chisato
    [J]. ADVANCES IN MATHEMATICS, 2015, 271 : 188 - 234
  • [3] The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes
    Beals, R
    Gaveau, B
    Greiner, P
    [J]. ADVANCES IN MATHEMATICS, 1996, 121 (02) : 288 - 345
  • [4] Hamilton-Jacobi theory and the heat kernel on Heisenberg groups
    Beals, R
    Gaveau, B
    Greiner, PC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07): : 633 - 689
  • [5] Transversally elliptic operators
    Beals, R
    Gaveau, B
    Greiner, P
    Kannai, Y
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (07): : 531 - 576
  • [6] Biagi S., 2019, An Introduction to the Geometrical Analysis of Vector Fields: With Applications to Maximum Principles and Lie Groups
  • [7] Biagi S, 2021, ADV DIFFERENTIAL EQU, V26, P621
  • [8] Global Gaussian Estimates for the Heat Kernel of Homogeneous Sums of Squares
    Biagi, Stefano
    Bramanti, Marco
    [J]. POTENTIAL ANALYSIS, 2023, 59 (01) : 113 - 151
  • [9] Global estimates in Sobolev spaces for homogeneous Hormander sums of squares
    Biagi, Stefano
    Bonfiglioli, Andrea
    Bramanti, Marco
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [10] The existence of a global fundamental solution for homogeneous Hormander operators via a global lifting method
    Biagi, Stefano
    Bonfiglioli, Andrea
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 855 - 889