Rational fabrication strategies of freestanding/binder-free electrodes for efficient capacitive deionization

被引:3
作者
Zhao, Zhibo [1 ,2 ]
Wang, Fangqiao [1 ,2 ]
Li, Baobao [1 ,2 ]
Chen, Zhuomin [1 ,2 ]
Zhou, Hao [1 ,2 ]
Wen, Xiaoru [3 ]
Ye, Meidan [1 ,2 ]
机构
[1] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[2] Xiamen Univ, Res Inst Biomimet & Soft Matter, Dept Phys, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
[3] Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot 010021, Peoples R China
来源
MATERIALS ADVANCES | 2023年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
GRAPHENE-BASED MATERIALS; WATER DESALINATION; BRACKISH-WATER; HIGHLY-EFFICIENT; 3D GRAPHENE; SEA-WATER; PERFORMANCE; ENERGY; INTERCALATION; MEMBRANE;
D O I
10.1039/d2ma01100j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Capacitive deionization (CDI) has received enormous attention as an emerging desalination alternative owing to the efficient energy footprint, low capital cost, and environmental friendliness. Conventionally, CDI electrodes are mainly fabricated using the slurry-coated method, through which insulated polymeric binders are utilized to integrate the active materials in powdery form and the conductive agents, thereby leading to inferior conductivity and poor cycling lifespan. Recently, freestanding/binder-free electrodes have provided great opportunities to improve the CDI performance due to the enhanced conductivity and stability. In this review, we show a comprehensive overview of the recent advances in the fabrication strategies (e.g., template-free, template-guided, and other less-common methods) of freestanding electrodes for CDI. Besides, we also highlight the related deionization performance metrics, including the ion removal capacity, rates, efficiency, and energy consumption. Furthermore, we discuss the remaining challenges and further outlooks for the continued development of freestanding electrodes for CDI applications.
引用
收藏
页码:2247 / 2268
页数:22
相关论文
共 178 条
[91]   3D Electronic Channels Wrapped Large-Sized Na3V2(PO4)3 as Flexible Electrode for Sodium-Ion Batteries [J].
Ni, Qiao ;
Bai, Ying ;
Li, Yu ;
Ling, Liming ;
Li, Limin ;
Chen, Guanghai ;
Wang, Zhaohua ;
Ren, Haixia ;
Wu, Feng ;
Wu, Chuan .
SMALL, 2018, 14 (43)
[92]   Self-supporting porous carbon nanofibers with opposite surface charges for high-performance inverted capacitive deionization [J].
Nie, Pengfei ;
Wang, Shiping ;
Shang, Xiaohong ;
Hu, Bin ;
Huang, Manhong ;
Yang, Jianmao ;
Liu, Jianyun .
DESALINATION, 2021, 520
[93]   Asymmetric Electrode Configuration for Enhanced Membrane Capacitive Deionization [J].
Omosebi, Ayokunle ;
Gao, Xin ;
Landon, James ;
Liu, Kunlei .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) :12640-12649
[94]   A Desalination Battery [J].
Pasta, Mauro ;
Wessells, Colin D. ;
Cui, Yi ;
La Mantia, Fabio .
NANO LETTERS, 2012, 12 (02) :839-843
[95]   Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization [J].
Peng, Weijun ;
Wang, Wei ;
Han, Guihong ;
Huang, Yukun ;
Zhang, Yongsheng .
DESALINATION, 2020, 473
[96]   Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization [J].
Porada, S. ;
Borchardt, L. ;
Oschatz, M. ;
Bryjak, M. ;
Atchison, J. S. ;
Keesman, K. J. ;
Kaskel, S. ;
Biesheuvel, P. M. ;
Presser, V. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3700-3712
[97]   Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors [J].
Prehal, C. ;
Koczwara, C. ;
Amenitsch, H. ;
Presser, V. ;
Paris, O. .
NATURE COMMUNICATIONS, 2018, 9
[98]   Energy consumption analysis of constant voltage and constant current operations in capacitive deionization [J].
Qu, Yatian ;
Campbell, Patrick G. ;
Gu, Lei ;
Knipe, Jennifer M. ;
Dzenitis, Ella ;
Santiago, Juan G. ;
Stadermann, Michael .
DESALINATION, 2016, 400 :18-24
[99]   Carbon electrodes for capacitive technologies [J].
Ratajczak, Paula ;
Suss, Matthew E. ;
Kaasik, Friedrich ;
Beguin, Francois .
ENERGY STORAGE MATERIALS, 2019, 16 :126-145
[100]   SILAR Deposition of Metal Oxide Nanostructured Films [J].
Ratnayake, Samantha Prabath ;
Ren, Jiawen ;
Colusso, Elena ;
Guglielmi, Massimo ;
Martucci, Alessandro ;
Della Gaspera, Enrico .
SMALL, 2021, 17 (49)