Gigahertz Acoustic Delay Lines in Lithium Niobate on Silicon Carbide With Propagation-Q of 11174

被引:10
作者
Zheng, Pengcheng [1 ,2 ]
Zhang, Shibin [1 ]
Chen, Yang [1 ,2 ]
Zhang, Liping [1 ,2 ]
Wu, Jinbo [1 ,2 ]
Yao, Hulin [1 ,2 ]
Fang, Xiaoli [1 ,2 ]
Zhao, Xiaomeng [1 ]
Huang, Kai [1 ]
Ou, Xin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
关键词
Acoustic delay lines; RF signal processing; lithium niobate thin film; silicon carbide; shear horizontal surface acoustic wave (SH-SAW); propagation-Q; FILTERS; WAVES;
D O I
10.1109/LED.2022.3233079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates gigahertz wideband acoustic delay lines (ADLs) with record-breaking propagation-Q using a thin-film X-cut lithium niobate on silicon carbide (LiNbO3-on-SiC) platform. Benefiting from the high bulkwave velocity and excellentmechanical fxQof SiC, the shear horizontal surface acoustic wave (SH-SAW) excited by unidirectional transducers propagates in the top-surface of LiNbO3-on-SiC with low acoustic loss. The zero power flowangle (PFA) of-3 degrees to+Y axis is obtained through simulation analysis and experiment validation, which leads to acoustic wave transmission perpendicular to the electrodes. Oriented at zero PFA, the fabricated ADLs show scalable center frequencies from1.19GHz to 2.11GHz, 3-dB fractional bandwidth ranging from 2.7% to 11.5%, and a record-high propagation-Q of 11174. The performance has shown the great potential of the LiNbO3-on-SiC acoustic platform for various signal processing applications.
引用
收藏
页码:309 / 312
页数:4
相关论文
共 30 条
  • [1] A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves
    Ash, B. J.
    Worsfold, S. R.
    Vukusic, P.
    Nash, G. R.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Acoustic Delay Lines in Thin-Film Lithium Niobate on Silicon Carbide
    Cho, Sinwoo
    Wang, Yinan
    Kramer, Jack
    Nguyen, Kristi
    Lu, Ruochen
    [J]. 2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, : 809 - 812
  • [3] High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure
    Hackett, L.
    Siddiqui, A.
    Dominguez, D.
    Douglas, J. K.
    Tauke-Pedretti, A.
    Friedmann, T.
    Peake, G.
    Arterburn, S.
    Eichenfield, M.
    [J]. APPLIED PHYSICS LETTERS, 2019, 114 (25)
  • [4] Towards single-chip radiofrequency signal processing via acoustoelectric electron-phonon interactions
    Hackett, Lisa
    Miller, Michael
    Brimigion, Felicia
    Dominguez, Daniel
    Peake, Greg
    Tauke-Pedretti, Anna
    Arterburn, Shawn
    Friedmann, Thomas A.
    Eichenfield, Matt
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Hakim M., 2019, INT EL DEVICES MEET, P9, DOI [10.1109/IEDM19573.2019.8993543.[7]L, DOI 10.1109/IEDM19573.2019.8993543.[7]L]
  • [6] Monocrystalline Silicon Carbide Disk Resonators on Phononic Crystals with Ultra-Low Dissipation Bulk Acoustic Wave Modes
    Hamelin, Benoit
    Yang, Jeremy
    Daruwalla, Anosh
    Wen, Haoran
    Ayazi, Farrokh
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Real-Space Characterization of Cavity-Coupled Waveguide Systems in Hypersonic Phononic Crystals
    Hatanaka, D.
    Yamaguchi, H.
    [J]. PHYSICAL REVIEW APPLIED, 2020, 13 (02)
  • [8] Hode JM, 1995, ULTRASON, P39, DOI 10.1109/ULTSYM.1995.495537
  • [9] Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications
    Jin, Hao
    Zhou, Jian
    He, Xingli
    Wang, Wenbo
    Guo, Hongwei
    Dong, Shurong
    Wang, Demiao
    Xu, Yang
    Geng, Junfeng
    Luo, J. K.
    Milne, W. I.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [10] Ko SD, 2018, PROC IEEE MICR ELECT, P996, DOI 10.1109/MEMSYS.2018.8346726