Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe2 nanoparticles for high-performance potassium-ion and lithium-ion batteries

被引:30
|
作者
Ye, Jiajia [1 ,2 ]
Chen, Zizhong [3 ]
Zheng, Zhiqiang [2 ]
Fu, Zhanghua [2 ]
Gong, Guanghao [2 ]
Xia, Guang [4 ]
Hu, Cheng [1 ,2 ]
机构
[1] Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[2] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem,Minist Educ, Jinan 250100, Shandong, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, I Lab, Suzhou 215123, Jiangsu, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 78卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SP co-doping; NiSe2; nanoparticles; Hollow carbon nanospheres; Potassium-ion batteries; Lithium-ion batteries; SODIUM-ION; PHOSPHORUS; NANOSHEETS; GRAPHENE; STORAGE; ANODE; ELECTROLYTE; NITROGEN; STATE;
D O I
10.1016/j.jechem.2022.12.052
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change, especially for the large-sized potassium-ions in secondary batteries. In this work, hollow carbon (HC) nanospheres embedded with S,P co-doped NiSe2 nanoparticles are fabricated by ``drop and dry" and ``dissolving and precipitation" processes to form Ni(OH) (2) nanocrystals followed by annealing with S and P dopants to form nanoparticles. The resultant S,P-NiSe2/HC composite exhibits excellent cyclic performance with 131.6 mA h g(-1) at 1000 mA g(-1) after 3000 cycles for K+ storage and a capacity of 417.1 mA h g(-1) at 1000 mA g(-1) after 1000 cycles for Li+ storage. K-ion full cells are assembled and deliver superior cycling stability with a capacity of 72.5 mA h g(-1) at 200 mA g(-1) after 500 cycles. The hollow carbon shell with excellent electrical conductivity effectively promotes the transportation and tolerates large volume variation for both K+ and Li+. Density functional theory calculations confirm that the S and P co-doping NiSe2 enables stronger adsorption of K+ ions and higher electrical conductivity that contributes to the improved electrochemical performance. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [31] Hollow carbon nanospheres with optimized nitrogen configuration controlled by heteroatom doping for high-performance potassium-ion storage
    Dai, Yao
    Qu, Zong-Tao
    Wang, Wen-Kang
    Li, Min -Shan
    Chen, Kai-Xuan
    Lyu, Shu-Shen
    CARBON, 2024, 224
  • [32] Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries
    Liu, Danyang
    Yang, Li
    Chen, Zanyu
    Zou, Guoqiang
    Hou, Hongshuai
    Hu, Jiugang
    Ji, Xiaobo
    SCIENCE BULLETIN, 2020, 65 (12) : 1003 - 1012
  • [33] Acid-base encapsulation prepared N/P co-doped carbon-coated natural graphite for high-performance lithium-ion batteries
    Shi, Qisen
    Zhang, Suna
    Yan, Xixi
    Li, Yang
    Zhu, Luping
    Qiao, Yongmin
    Wang, Lijun
    Xie, Huaqing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 952
  • [34] N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries
    Xiong, Jiawen
    Pan, Qichang
    Zheng, Fenghua
    Xiong, Xunhui
    Yang, Chenghao
    Hu, Dongli
    Huang, Chunlai
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [35] Rich oxygen vacancies promotes MoO2/N-doped carbon nanoribbons for high-performance sodium/potassium-ion batteries
    Du, Yanan
    Huang, Zhiqiang
    Yu, Maoxin
    Wu, Zhilong
    Huang, Xiaohui
    Ying, Shaoming
    Yang, Haotian
    Lin, Zhiya
    JOURNAL OF ELECTROCERAMICS, 2025,
  • [36] N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery
    Cao, Jinhui
    Zhong, Jiang
    Xu, Hanjiao
    Li, Shengyang
    Deng, Hongli
    Wang, Tao
    Fan, Ling
    Wang, Xinghui
    Wang, Lei
    Zhu, Jian
    Lu, Bingan
    Duan, Xidong
    NANO RESEARCH, 2022, 15 (03) : 2040 - 2046
  • [37] S/N dual-doped carbon nanosheets decorated with CoxOy nanoparticles as high-performance anodes for lithium-ion batteries
    XiaoFei Wang
    Yong Zhu
    Sheng Zhu
    JinChen Fan
    QunJie Xu
    YuLin Min
    Journal of Nanoparticle Research, 2018, 20
  • [38] In-situ doped and activated N, S co-doped porous carbon derived from organic salt for application in high-performance potassium-ion batteries
    Kim, Dae Kyom
    Jo, Du Yeol
    Yu, Jeehoon
    Park, Seung-Keun
    Yoo, Youngjae
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [39] Sulfur/Nitrogen Co-Doped Mesoporous Carbon for High-Performance Lithium-Ion Battery Anodes
    Xie, Yu-Long
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (08) : 4299 - 4306
  • [40] P-Doped Cotton Stalk Carbon for High-Performance Lithium-Ion Batteries and Lithium-Sulfur Batteries
    Huang, Yudai
    Jia, Dianzeng
    Wei, Yanbin
    Cheng, Wenhua
    Liu, Zhenjie
    Sheng, Rui
    Wang, Xingchao
    Tang, Xincun
    LANGMUIR, 2022, 38 (38) : 11610 - 11620