Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe2 nanoparticles for high-performance potassium-ion and lithium-ion batteries

被引:30
|
作者
Ye, Jiajia [1 ,2 ]
Chen, Zizhong [3 ]
Zheng, Zhiqiang [2 ]
Fu, Zhanghua [2 ]
Gong, Guanghao [2 ]
Xia, Guang [4 ]
Hu, Cheng [1 ,2 ]
机构
[1] Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[2] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem,Minist Educ, Jinan 250100, Shandong, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, I Lab, Suzhou 215123, Jiangsu, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 78卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SP co-doping; NiSe2; nanoparticles; Hollow carbon nanospheres; Potassium-ion batteries; Lithium-ion batteries; SODIUM-ION; PHOSPHORUS; NANOSHEETS; GRAPHENE; STORAGE; ANODE; ELECTROLYTE; NITROGEN; STATE;
D O I
10.1016/j.jechem.2022.12.052
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change, especially for the large-sized potassium-ions in secondary batteries. In this work, hollow carbon (HC) nanospheres embedded with S,P co-doped NiSe2 nanoparticles are fabricated by ``drop and dry" and ``dissolving and precipitation" processes to form Ni(OH) (2) nanocrystals followed by annealing with S and P dopants to form nanoparticles. The resultant S,P-NiSe2/HC composite exhibits excellent cyclic performance with 131.6 mA h g(-1) at 1000 mA g(-1) after 3000 cycles for K+ storage and a capacity of 417.1 mA h g(-1) at 1000 mA g(-1) after 1000 cycles for Li+ storage. K-ion full cells are assembled and deliver superior cycling stability with a capacity of 72.5 mA h g(-1) at 200 mA g(-1) after 500 cycles. The hollow carbon shell with excellent electrical conductivity effectively promotes the transportation and tolerates large volume variation for both K+ and Li+. Density functional theory calculations confirm that the S and P co-doping NiSe2 enables stronger adsorption of K+ ions and higher electrical conductivity that contributes to the improved electrochemical performance. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [1] Nitrogen/phosphorus co-doped carbon decorated with metallic zinc for high-performance potassium-ion batteries
    Shi, Xiaodong
    Xu, Zhenming
    Tang, Yan
    Zhao, Yunxiang
    Lu, Bingan
    Zhou, Jiang
    APPLIED PHYSICS LETTERS, 2023, 123 (04)
  • [2] Rationally designed heterostructure ZnS/SnS@N-doped carbon microspheres as high-performance anode for lithium-ion batteries
    Zhang, Lixuan
    Zhang, Man
    Peng, Fan
    Pan, Qichang
    Wang, Hongqiang
    Zheng, Fenghua
    Huang, Youguo
    Li, Qingyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910
  • [3] S/N co-doped hierarchical porous carbon from lignite as high-performance anode for potassium-ion batteries
    Jiao, Rongji
    Deng, Zhengjun
    Lei, Long
    Liu, Yunying
    Cui, Jinlong
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [4] Construction of Bimetallic Selenides Encapsulated in Nitrogen/Sulfur Co-Doped Hollow Carbon Nanospheres for High-Performance Sodium/Potassium-Ion Half/Full Batteries
    Sun Zhonghui
    Wu Xing-Long
    Xu Jianan
    Qu Dongyang
    Zhao Bolin
    Gu Zhenyi
    Li Wenhao
    Liang Haojie
    Gao Lifang
    Fan Yingying
    Zhou Kai
    Han Dongxue
    Gan Shiyu
    Zhang Yuwei
    Niu Li
    SMALL, 2020, 16 (19)
  • [5] Sn-Co Nanoalloys Encapsulated in N-Doped Carbon Hollow Cubes as a High-Performance Anode Material for Lithium-Ion Batteries
    Yang, Juan
    Zhang, Jiaming
    Zhou, Xiangyang
    Ren, Yongpeng
    Jiang, Min
    Tang, Jingjing
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) : 35216 - 35223
  • [6] Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries
    Huo, Kaifu
    An, Weili
    Fu, Jijiang
    Gao, Biao
    Wang, Lei
    Peng, Xiang
    Cheng, Gary J.
    Chu, Paul K.
    JOURNAL OF POWER SOURCES, 2016, 324 : 233 - 238
  • [7] Self-supporting ZnP2@N, P co-doped carbon nanofibers as high-performance anode material for lithium-ion batteries
    He, Xijun
    Wang, Xiaodong
    Tang, Ming
    Zhang, Han
    Wang, Yu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
  • [8] Organic-Inorganic Hybrid Interfaces Enable the Preparation of Nitrogen-Doped Hollow Carbon Nanospheres as High-Performance Anodes for Lithium and Potassium-Ion Batteries
    Dai, Yao
    Mo, Dong-Chuan
    Qu, Zong-Tao
    Wang, Wen-Kang
    Lyu, Shu-Shen
    MATERIALS, 2023, 16 (14)
  • [9] Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries
    Xia, Guoliang
    Wang, Changlai
    Jiang, Peng
    Lu, Jian
    Diao, Jiefeng
    Chen, Qianwang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) : 12317 - 12324
  • [10] N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries
    Zhou, Chunli
    Wang, Dengke
    Yang, Hui
    Li, Ang
    Song, Huaihe
    Chen, Xiaohong
    Xing, Guanjie
    Yang, Huijing
    Liu, Haiyan
    SOLID STATE IONICS, 2021, 361