Nearest Neighbours Graph Variational AutoEncoder

被引:2
作者
Arsini, Lorenzo [1 ,2 ]
Caccia, Barbara [3 ]
Ciardiello, Andrea [2 ]
Giagu, Stefano [1 ,2 ]
Mancini Terracciano, Carlo [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Phys, I-00185 Rome, Italy
[2] INFN, Sect Rome, I-00185 Rome, Italy
[3] Ist Super Sanita, I-00161 Rome, Italy
关键词
graph neural network; variational autoencoder; pooling; nearest neighbours;
D O I
10.3390/a16030143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graphs are versatile structures for the representation of many real-world data. Deep Learning on graphs is currently able to solve a wide range of problems with excellent results. However, both the generation of graphs and the handling of large graphs still remain open challenges. This work aims to introduce techniques for generating large graphs and test the approach on a complex problem such as the calculation of dose distribution in oncological radiotherapy applications. To this end, we introduced a pooling technique (ReNN-Pool) capable of sampling nodes that are spatially uniform without computational requirements in both model training and inference. By construction, the ReNN-Pool also allows the definition of a symmetric un-pooling operation to recover the original dimensionality of the graphs. We also present a Variational AutoEncoder (VAE) for generating graphs, based on the defined pooling and un-pooling operations, which employs convolutional graph layers in both encoding and decoding phases. The performance of the model was tested on both the realistic use case of a cylindrical graph dataset for a radiotherapy application and the standard benchmark dataset sprite. Compared to other graph pooling techniques, ReNN-Pool proved to improve both performance and computational requirements.
引用
收藏
页数:17
相关论文
共 35 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Assouel R., 2018, ARXIV
[3]   Machine learning and wearable devices of the future [J].
Beniczky, Sandor ;
Karoly, Philippa ;
Nurse, Ewan ;
Ryvlin, Philippe ;
Cook, Mark .
EPILEPSIA, 2021, 62 :S116-S124
[4]   Hierarchical Representation Learning in Graph Neural Networks With Node Decimation Pooling [J].
Bianchi, Filippo Maria ;
Grattarola, Daniele ;
Livi, Lorenzo ;
Alippi, Cesare .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (05) :2195-2207
[5]   Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models [J].
Bond-Taylor, Sam ;
Leach, Adam ;
Long, Yang ;
Willcocks, Chris G. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :7327-7347
[6]  
Bravo-Hermsdorff G, 2020, Arxiv, DOI arXiv:1902.09702
[7]  
Bresson X, 2019, Arxiv, DOI arXiv:1906.03412
[8]  
Defferrard M., 2017, ARXIV
[9]  
Dhillon IS, 2007, IEEE T PATTERN ANAL, V29, P1944, DOI [10.1109/TPAMI.2007.1115, 10.1109/TP'AMI.2007.1115]
[10]  
Du YQ, 2022, AAAI CONF ARTIF INTE, P6541