Denoising of BOTDR Dynamic Strain Measurement Using Convolutional Neural Networks

被引:10
|
作者
Li, Bo [1 ,2 ,3 ]
Jiang, Ningjun [1 ,3 ]
Han, Xiaole [3 ]
机构
[1] Southeast Univ, Inst Geotech Engn, Nanjing 211189, Peoples R China
[2] Univ Cambridge, Dept Engn, Cambridge CP2 1PZ, England
[3] Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI 96822 USA
关键词
Brillouin scattering; fibre optic sensing; image denoising; convolutional neural network; TIME DOMAIN ANALYZER; BRILLOUIN; CNN;
D O I
10.3390/s23041764
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Brillouin optical time domain reflectometry (BOTDR) system measures the distributed strain and temperature information along the optic fibre by detecting the Brillouin gain spectra (BGS) and finding the Brillouin frequency shift profiles. By introducing small gain stimulated Brillouin scattering (SBS), dynamic measurement using BOTDR can be realized, but the performance is limited due to the noise of the detected information. An image denoising method using the convolutional neural network (CNN) is applied to the derived Brillouin gain spectrum images to enhance the performance of the Brillouin frequency shift detection and the strain vibration measurement of the BOTDR system. By reducing the noise of the BGS images along the length of the fibre under test with different network depths and epoch numbers, smaller frequency uncertainties are obtained, and the sine-fitting R-squared values of the detected strain vibration profiles are also higher. The Brillouin frequency uncertainty is improved by 24% and the sine-fitting R-squared value of the obtained strain vibration profile is enhanced to 0.739, with eight layers of total depth and 200 epochs.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Wrapped phase denoising using convolutional neural networks
    Yan, Ketao
    Yu, Yingjie
    Sun, Tao
    Asundi, Anand
    Kemao, Qian
    OPTICS AND LASERS IN ENGINEERING, 2020, 128
  • [2] Attenuation of random noise using denoising convolutional neural networks
    Si, Xu
    Yuan, Yijun
    Si, Tinghua
    Gao, Shiwen
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE269 - SE280
  • [3] Dynamic PET Image Denoising Using Deep Convolutional Neural Networks Without Prior Training Datasets
    Hashimoto, Fumio
    Ohba, Hiroyuki
    Ote, Kibo
    Teramoto, Atsushi
    Tsukada, Hideo
    IEEE ACCESS, 2019, 7 : 96594 - 96603
  • [4] Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
    Yuyeon Jung
    Taewan Kim
    Mi-Ryung Han
    Sejin Kim
    Geunyoung Kim
    Seungchul Lee
    Youn Jin Choi
    Scientific Reports, 12
  • [5] Ovarian tumor diagnosis using deep convolutional neural networks and denoising convolutional autoencoder
    Choi, Youn Jin
    Jung, Yuyeon
    CANCER RESEARCH, 2022, 82 (12)
  • [6] Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
    Jung, Yuyeon
    Kim, Taewan
    Han, Mi-Ryung
    Kim, Sejin
    Kim, Geunyoung
    Lee, Seungchul
    Choi, Youn Jin
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Solar image denoising with convolutional neural networks
    Baso, C. J. Diaz
    Rodriguez, J. de la Cruz
    Danilovic, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 629
  • [8] Denoising diffusion weighted imaging data using convolutional neural networks
    Cheng, Hu
    Vinci-Booher, Sophia
    Wang, Jian
    Caron, Bradley
    Wen, Qiuting
    Newman, Sharlene
    Pestilli, Franco
    PLOS ONE, 2022, 17 (09):
  • [9] Image Denoising using Attention-Residual Convolutional Neural Networks
    Pires, Rafael G.
    Santos, Daniel F. S.
    Santos, Claudio F. G.
    Santana, Marcos C. S.
    Papa, Joao P.
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 101 - 107
  • [10] Denoising Digital Breast Tomosynthesis Projections using Convolutional Neural Networks
    de Araujo, Darlan M. N.
    Salvadeo, Denis H. P.
    de Paula, Davi D.
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596