Existence and upper semicontinuity of random attractors for the 2D stochastic convective Brinkman-Forchheimer equations in bounded domains

被引:5
作者
Kinra, K. [1 ]
Mohan, M. T. [1 ,2 ]
机构
[1] Indian Inst Technol Roorkee, IIT Roorkee, Dept Math, Roorkee, Uttarakhand, India
[2] Indian Inst Technol Roorkee, IIT Roorkee, Dept Math, Haridwar Highway, Roorkee 247667, Uttarakhand, India
关键词
Stochastic convective Brinkman-Forchheimer equations; cylindrical wiener process; random attractors; flattening property; upper semicontinuity; REACTION-DIFFUSION EQUATIONS; NAVIER-STOKES EQUATIONS; H-1-RANDOM ATTRACTORS;
D O I
10.1080/17442508.2022.2150520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we discuss the large time behaviour of the solutions of two-dimensional stochastic convective Brinkman-Forchheimer (SCBF) equations on bounded domains. Under the functional set-ting V ? H ? V', whereH and V are appropriate separable Hilbert spaces and the fact that the embedding V ? H is compact, we establish the existence of random attractors in H for the stochas-tic flow generated by 2D SCBF equations perturbed by additive noise. We prove the upper semicontinuity of the random attrac-tors for 2D SCBF equations in H, when the coefficient of random term approaches zero. Moreover, we obtain the existence of random attractors in a more regular space V, using the pullback flattening property. The existence of random attractors ensures the existence of invariant compact random set and hence we show the existence of an invariant measure for 2D SCBF equations. Finally, we also com-ment on the uniqueness of invariant measures.
引用
收藏
页码:1042 / 1077
页数:36
相关论文
共 59 条
[1]   The Navier-Stokes problem modified by an absorption term [J].
Antontsev, S. N. ;
de Oliveira, H. B. .
APPLICABLE ANALYSIS, 2010, 89 (12) :1805-1825
[2]  
Arnold L., 1998, Springer Monographs in Mathematics
[3]   Random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) :845-869
[4]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[5]   Asymptotic behaviour of solutions to the 2D stochastic Navier-Stokes equations in unbounded domains - New developments [J].
Brzezniak, Z ;
Li, YH .
RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, :78-111
[6]   Random Attractors for the Stochastic Navier-Stokes Equations on the 2D Unit Sphere [J].
Brzezniak, Z. ;
Goldys, B. ;
Le Gia, Q. T. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (01) :227-253
[7]   Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains [J].
Brzezniak, Z. ;
Caraballo, T. ;
Langa, J. A. ;
Li, Y. ;
Lukaszewicz, G. ;
Real, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3897-3919
[8]   PATHWISE GLOBAL ATTRACTORS FOR STATIONARY RANDOM DYNAMIC-SYSTEMS [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) :87-102
[9]  
Brzezniak Z, 2001, ANN PROBAB, V29, P1796
[10]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74