Criterion for Lyapunov stability of periodic Camassa-Holm equations

被引:4
|
作者
Cao, Feng [1 ,2 ]
Chu, Jifeng [3 ]
Jiang, Ke [4 ]
机构
[1] Nanjing Univ Aeronut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] NUAA, MIIT, Key Lab Math Modelling & High Performance Comp Ai, Nanjing 211106, Peoples R China
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[4] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Camassa-Holm equation; Lyapunov stability; Eigenvalues; Lyapunov-type criterion; INVERSE SPECTRAL PROBLEM; SHALLOW-WATER EQUATION; CONTINUOUS DEPENDENCE;
D O I
10.1007/s10231-022-01292-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Lyapunov stability of the periodic Camassa-Holm equation in terms of the periodic/anti-periodic eigenvalues and the associated spectral intervals. We consider the case with definite potentials as well as the case with indefinite potentials. In particular, we prove a Lyapunov-type stability criterion.
引用
收藏
页码:1557 / 1572
页数:16
相关论文
共 50 条
  • [41] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu Zhao
    Changzheng Qu
    Chinese Annals of Mathematics, Series B, 2020, 41 : 407 - 418
  • [42] The Pullback Attractors for the Nonautonomous Camassa-Holm Equations
    Wu, Delin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [43] EMBEDDING CAMASSA-HOLM EQUATIONS IN INCOMPRESSIBLE EULER
    Natale, Andrea
    Vialard, Francois-Xavier
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 205 - 223
  • [44] Numerical study of fractional Camassa-Holm equations
    Klein, Christian
    Oruc, Goksu
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 457
  • [45] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Zhao, Lu
    Qu, Changzheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (03) : 407 - 418
  • [46] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu ZHAO
    Changzheng QU
    Chinese Annals of Mathematics,Series B, 2020, (03) : 407 - 418
  • [47] LOCAL AND GLOBAL ANALYTICITY FOR μ-CAMASSA-HOLM EQUATIONS
    Yamane, Hideshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) : 4307 - 4340
  • [48] ON THE VISCOUS CAMASSA-HOLM EQUATIONS WITH FRACTIONAL DIFFUSION
    Gan, Zaihui
    Lin, Fanghua
    Tong, Jiajun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3427 - 3450
  • [49] Stability of periodic peakons for a generalized-μ Camassa-Holm equation with quartic nonlinearities
    Li, Zhigang
    APPLICABLE ANALYSIS, 2022, : 4638 - 4651
  • [50] Inverse Spectral Problem for the Periodic Camassa-Holm Equation
    Evgeni Korotyaev
    Journal of Nonlinear Mathematical Physics, 2004, 11 : 499 - 507