Design Principles of Colloidal Nanorod Heterostructures

被引:42
作者
Drake, Gryphon A. [1 ]
Keating, Logan P. [1 ]
Shim, Moonsub [1 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
LIGHT-EMITTING-DIODES; ONE-POT SYNTHESIS; CATION-EXCHANGE; QUANTUM DOTS; UP-CONVERSION; HIGH-EFFICIENCY; SHAPE CONTROL; NANOCRYSTAL HETEROSTRUCTURES; DEPENDENT PHOTOLUMINESCENCE; SEMICONDUCTOR NANOCRYSTALS;
D O I
10.1021/acs.chemrev.2c00410
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anisotropic heterostructures of colloidal nanocrystals embed size-, shape-, and composition-dependent electronic structure within variable three-dimensional morphology, enabling intricate design of solution-processable materials with high performance and programmable functionality. The key to designing and synthesizing such complex materials lies in understanding the fundamental thermodynamic and kinetic factors that govern nanocrystal growth. In this review, nanorod heterostructures, the simplest of anisotropic nanocrystal heterostructures, are discussed with respect to their growth mechanisms. The effects of crystal structure, surface faceting/energies, lattice strain, ligand sterics, precursor reactivity, and reaction temperature on the growth of nanorod heterostructures through heteroepitaxy and cation exchange reactions are explored with currently known examples. Understanding the role of various thermodynamic and kinetic parameters enables the controlled synthesis of complex nanorod heterostructures that can exhibit unique tailored properties. Selected application prospects arising from such capabilities are then discussed.
引用
收藏
页码:3761 / 3789
页数:29
相关论文
共 158 条
[1]   Reaction Chemistry/Nanocrystal Property Relations in the Hot Injection Synthesis, the Role of the Solute Solubility [J].
Abe, Sofie ;
Capek, Richard K. ;
De Geyter, Bram ;
Hens, Zeger .
ACS NANO, 2013, 7 (02) :943-949
[2]   Photoluminescent, "ice-cream cone" like Cu-In-(Zn)-S/ZnS nanoheterostructures [J].
Bai, Xue ;
Purcell-Milton, Finn ;
Kehoe, Daniel K. ;
Gun'ko, Yurii K. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Near-infrared-emitting CIZSe/CIZS/ZnS colloidal heteronanonail structures [J].
Bai, Xue ;
Purcell-Milton, Finn ;
Gun'ko, Yurii K. .
NANOSCALE, 2020, 12 (28) :15295-15303
[4]   Technology progress on quantum dot light-emitting diodes for next-generation displays [J].
Bang, Sang Yun ;
Suh, Yo-Han ;
Fan, Xiang-Bing ;
Shin, Dong-Wook ;
Lee, Sanghyo ;
Choi, Hyung Woo ;
Lee, Tae Hoon ;
Yang, Jiajie ;
Zhan, Shijie ;
Harden-Chaters, William ;
Samarakoon, Chatura ;
Occhipinti, Luigi G. ;
Han, Soo Deok ;
Jung, Sung-Min ;
Kim, Jong Min .
NANOSCALE HORIZONS, 2021, 6 (02) :68-77
[5]  
Bauer E., 1958, I. Z. Kristallogr, V110, P372, DOI [DOI 10.1524/ZKRI.1958.110.1-6.372, 10.1524/zkri.1958.110.1-6.372]
[6]   Machine Learning Tools to Predict Hot Injection Syntheses Outcomes for II-VI and IV-VI Quantum Dots [J].
Baum, Fabio ;
Pretto, Tatiane ;
Koeche, Ariadne ;
Leite Santos, Marcos Jose .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (44) :24298-24305
[7]   Cation Exchange: A Versatile Tool for Nanomaterials Synthesis [J].
Beberwyck, Brandon J. ;
Surendranath, Yogesh ;
Alivisatos, A. Paul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (39) :19759-19770
[8]   Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth [J].
Bladt, Eva ;
van Dijk-Moes, Relinde J. A. ;
Peters, Joep ;
Montanarella, Federico ;
Donega, Celso de Mello ;
Vanmaekelbergh, Daniel ;
Bals, Sara .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (43) :14288-14293
[9]   Tuning Radiative Recombination in Cu-Doped Nanocrystals via Electrochemical Control of Surface Trapping [J].
Brovelli, Sergio ;
Galland, Christophe ;
Viswanatha, Ranjani ;
Klimov, Victor I. .
NANO LETTERS, 2012, 12 (08) :4372-4379
[10]   Retrosynthetic Design of Morphologically Complex Metal Sulfide Nanoparticles Using Sequential Partial Cation Exchange and Chemical Etching [J].
Butterfield, Auston G. ;
Steimle, Benjamin C. ;
Schaak, Raymond E. .
ACS MATERIALS LETTERS, 2020, 2 (09) :1106-1114