The Hermitian Solution to a New System of Commutative Quaternion Matrix Equations

被引:14
作者
Zhang, Yue [1 ]
Wang, Qing-Wen [1 ,2 ]
Xie, Lv-Ming [1 ]
机构
[1] Shanghai Univ, Newtouch Ctr Math, Dept Math, Shanghai 200444, Peoples R China
[2] Collaborat Innovat Ctr Marine Artificial Intellige, Shanghai 200444, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 03期
基金
中国国家自然科学基金;
关键词
commutative quaternion algebra; matrix equations; Hermitian matrix; least squares solution; SYLVESTER EQUATION; TRANSFORM;
D O I
10.3390/sym16030361
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper considers the Hermitian solutions of a new system of commutative quaternion matrix equations, where we establish both necessary and sufficient conditions for the existence of solutions. Furthermore, we derive an explicit general expression when it is solvable. In addition, we also provide the least squares Hermitian solution in cases where the system of matrix equations is not consistent. To illustrate our main findings, in this paper we present two numerical algorithms and examples.
引用
收藏
页数:14
相关论文
共 28 条
  • [1] Barraud A., 2000, P INT C NUMERICAL AN, VVolumn 1988, P35
  • [2] Ben-Israel A., 2003, Generalized inverses, theory and applications, V2nd ed
  • [3] On the solution of a Sylvester equation appearing in descriptor systems control theory
    Castelan, EB
    da Silva, VG
    [J]. SYSTEMS & CONTROL LETTERS, 2005, 54 (02) : 109 - 117
  • [4] Commutative (Segre's) quaternion fields and relation with Maxwell equations
    Catoni, Francesco
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (01) : 9 - 28
  • [5] Dual Quaternion Matrix Equation AXB = C with Applications
    Chen, Yan
    Wang, Qing-Wen
    Xie, Lv-Ming
    [J]. SYMMETRY-BASEL, 2024, 16 (03):
  • [6] Reduced biquaternion canonical transform, convolution and correlation
    Guo, Liqiang
    Zhu, Ming
    Ge, Xinhong
    [J]. SIGNAL PROCESSING, 2011, 91 (08) : 2147 - 2153
  • [7] Hamilton W. R., 1853, Lectures on quaternions
  • [8] Isokawa T, 2010, IEEE IJCNN
  • [9] Color Two-Dimensional Principal Component Analysis for Face Recognition Based on Quaternion Model
    Jia, Zhi-Gang
    Ling, Si-Tao
    Zhao, Mei-Xiang
    [J]. INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT I, 2017, 10361 : 177 - 189
  • [10] Quaternionic Hopfield neural networks with twin-multistate activation function
    Kobayashi, Masaki
    [J]. NEUROCOMPUTING, 2017, 267 : 304 - 310