ERASER: Towards Adaptive Leakage Suppression for Fault-Tolerant Quantum Computing

被引:2
作者
Vittal, Suhas [1 ]
Das, Poulami [2 ]
Qureshi, Moinuddin [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Texas Austin, Austin, TX USA
来源
56TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2023 | 2023年
关键词
Quantum Error Correction; Leakage Suppression; ALGORITHMS;
D O I
10.1145/3613424.3614251
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum error correction (QEC) codes can tolerate hardware errors by encoding fault-tolerant logical qubits using redundant physical qubits and detecting errors using parity checks. Leakage errors occur in quantum systems when a qubit leaves its computational basis and enters higher energy states. These errors severely limit the performance of QEC due to two reasons. First, they lead to erroneous parity checks that obfuscate the accurate detection of errors. Second, the leakage spreads to other qubits and creates a pathway for more errors over time. Prior works tolerate leakage errors by using leakage reduction circuits (LRCs) that modify the parity check circuitry of QEC codes. Unfortunately, naively using LRCs always throughout a program is sub-optimal because LRCs incur additional two-qubit operations that (1) facilitate leakage transport, and (2) serve as new sources of errors. Ideally, LRCs should only be used if leakage occurs, so that errors from both leakage as well as additional LRC operations are simultaneously minimized. However, identifying leakage errors in real-time is challenging. To enable the robust and efficient usage of LRCs, we propose ERASER that speculates the subset of qubits that may have leaked and only uses LRCs for those qubits. Our studies show that the majority of leakage errors typically impact the parity checks. We leverage this insight to identify the leaked qubits by analyzing the patterns in the failed parity checks. We propose ERASER+M that enhances ERASER by detecting leakage more accurately using qubit measurement protocols that can classify qubits into |0., |1. and |... states. ERASER and ERASER+M improve the logical error rate by up to 4.3x and 23x respectively compared to always using LRC.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 72 条
  • [1] Suppressing quantum errors by scaling a surface code logical qubit
    Acharya, Rajeev
    Aleiner, Igor
    Allen, Richard
    Andersen, Trond I.
    Ansmann, Markus
    Arute, Frank
    Arya, Kunal
    Asfaw, Abraham
    Atalaya, Juan
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Basso, Joao
    Bengtsson, Andreas
    Boixo, Sergio
    Bortoli, Gina
    Bourassa, Alexandre
    Bovaird, Jenna
    Brill, Leon
    Broughton, Michael
    Buckley, Bob B.
    Buell, David A.
    Burger, Tim
    Burkett, Brian
    Bushnell, Nicholas
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Cogan, Josh
    Collins, Roberto
    Conner, Paul
    Courtney, William
    Crook, Alexander L.
    Curtin, Ben
    Debroy, Dripto M.
    Barba, Alexander Del Toro
    Demura, Sean
    Dunsworth, Andrew
    Eppens, Daniel
    Erickson, Catherine
    Faoro, Lara
    Farhi, Edward
    Fatemi, Reza
    Burgos, Leslie Flores
    Forati, Ebrahim
    Fowler, Austin G.
    Foxen, Brooks
    Giang, William
    Gidney, Craig
    Gilboa, Dar
    [J]. NATURE, 2023, 614 (7949) : 676 - +
  • [2] Aliferis P, 2006, Arxiv, DOI arXiv:quant-ph/0511065
  • [3] Argonne National Laboratory, 2018, INTRODUCTION TO QUANTUM ERROR CORRECTION
  • [4] Berent L, 2022, Arxiv, DOI [arXiv:2209.01180, 10.48550/ARXIV.2209.01180, DOI 10.48550/ARXIV.2209.01180]
  • [5] Critical faults of leakage errors on the surface code
    Brown, Natalie C.
    Cross, Andrew
    Brown, Kenneth R.
    [J]. IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 286 - 294
  • [6] Leakage mitigation for quantum error correction using a mixed qubit scheme
    Brown, Natalie C.
    Brown, Kenneth R.
    [J]. PHYSICAL REVIEW A, 2019, 100 (03)
  • [7] Handling leakage with subsystem codes
    Brown, Natalie C.
    Newman, Michael
    Brown, Kenneth R.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (07)
  • [8] Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements
    Bultink, C. C.
    O'Brien, T. E.
    Vollmer, R.
    Muthusubramanian, N.
    Beekman, M. W.
    Rol, M. A.
    Fu, X.
    Tarasinski, B.
    Ostroukh, V
    Varbanov, B.
    Bruno, A.
    DiCarlo, L.
    [J]. SCIENCE ADVANCES, 2020, 6 (12)
  • [9] XQsim: Modeling Cross-Technology Control Processors for 10+K Qubit Quantum Computers
    Byun, Ilkwon
    Kim, Junpyo
    Min, Dongmoon
    Nagaoka, Ikki
    Fukumitsu, Kosuke
    Ishikawa, Iori
    Tanimoto, Teruo
    Tanaka, Masamitsu
    Inoue, Koji
    Kim, Jangwoo
    [J]. PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 366 - 382
  • [10] Applying quantum algorithms to constraint satisfaction problems
    Campbell, Earl
    Khurana, Ankur
    Montanaro, Ashley
    [J]. QUANTUM, 2019, 3