Mediation Analyses of Intensive Longitudinal Data with Dynamic Structural Equation Modeling

被引:4
|
作者
Fang, Jie [1 ]
Wen, Zhonglin [2 ,4 ]
Hau, Kit-Tai [3 ]
机构
[1] Guangdong Univ Finance & Econ, Guangzhou, Peoples R China
[2] South China Normal Univ, Guangzhou, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[4] South China Normal Univ, Sch Psychol, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic structural equation modeling; intensive longitudinal data; mediation effect; moderated mediation model; residual dynamic structural equation modeling; CROSS-SECTIONAL ANALYSES; TIME; BIAS;
D O I
10.1080/10705511.2023.2268293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e., 1-1-1, 2-1-1, and 2-2-1) of intensive longitudinal mediation (ILM) analyses based on DSEM and RDSEM models. Specifically, each ILM model was demonstrated with a simulated example and illustrated with the corresponding annotated Mplus codes. We compared two types of detrending methods in mediation analyses and showed that RDSEM was superior to DSEM because the latter included the timetj variable as a Level 1 predictor. Lastly, we extended ILM analyses based on DSEM and RDSEM to multilevel autoregressive mediation models, cross-classified DSEM, and intensive longitudinal moderated mediation models.
引用
收藏
页码:728 / 741
页数:14
相关论文
共 50 条
  • [31] Detrending for Intensive Longitudinal Dyadic Data Analysis Using DSEM
    Xiao, Yue
    Liu, Hongyun
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2025,
  • [32] Investigating Individual Variation Using Dynamic Structural Equation Modeling: A Tutorial With Tinnitus
    Rodebaugh, Thomas L. L.
    Piccirillo, Marilyn L. L.
    Frumkin, Madelyn R. R.
    Kallogjeri, Dorina
    Gerull, Katherine M. M.
    Piccirillo, Jay F. F.
    CLINICAL PSYCHOLOGICAL SCIENCE, 2023, 11 (03) : 574 - 591
  • [33] Dynamic Structural Equation Models
    Asparouhov, Tihomir
    Hamaker, Ellen L.
    Muthen, Bengt
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (03) : 359 - 388
  • [34] Testing relational turbulence theory in daily life using dynamic structural equation modeling
    Goodboy, Alan K.
    Dillow, Megan R.
    Shin, Matt
    Chiasson, Rebekah M.
    Zyphur, Michael J.
    JOURNAL OF COMMUNICATION, 2024, 74 (03) : 249 - 264
  • [35] Applying Causal Discovery to Intensive Longitudinal Data
    Stevenson, Brittany L.
    Kummerfeld, Erich
    Merrill, Jennifer E.
    CAUSAL ANALYSIS WORKSHOP SERIES, VOL 160, 2021, 160 : 20 - +
  • [36] On the Use of Mixed Markov Models for Intensive Longitudinal Data
    de Haan-Rietdijk, S.
    Kuppens, P.
    Bergeman, C. S.
    Sheeber, L. B.
    Allen, N. B.
    Hamaker, E. L.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2017, 52 (06) : 747 - 767
  • [37] An Exponential Effect Persistence Model for Intensive Longitudinal Data
    Setodji, Claude M.
    Martino, Steven C.
    Dunbar, Michael S.
    Shadel, William G.
    PSYCHOLOGICAL METHODS, 2019, 24 (05) : 622 - 636
  • [38] Estimation of Controlled Direct Effects in Longitudinal Mediation Analyses with Latent Variables in Randomized Studies
    Loh, Wen Wei
    Moerkerke, Beatrijs
    Loeys, Tom
    Poppe, Louise
    Crombez, Geert
    Vansteelandt, Stijn
    MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 55 (05) : 763 - 785
  • [39] Latent Growth and Dynamic Structural Equation Models
    Grimm, Kevin J.
    Ram, Nilam
    ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, VOL 14, 2018, 14 : 55 - 89
  • [40] When Are Multidimensional Data Unidimensional Enough for Structural Equation Modeling? An Evaluation of the DETECT Multidimensionality Index
    Bonifay, Wes E.
    Reise, Steven P.
    Scheines, Richard
    Meijer, Rob R.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2015, 22 (04) : 504 - 516