Mediation Analyses of Intensive Longitudinal Data with Dynamic Structural Equation Modeling

被引:4
|
作者
Fang, Jie [1 ]
Wen, Zhonglin [2 ,4 ]
Hau, Kit-Tai [3 ]
机构
[1] Guangdong Univ Finance & Econ, Guangzhou, Peoples R China
[2] South China Normal Univ, Guangzhou, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[4] South China Normal Univ, Sch Psychol, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic structural equation modeling; intensive longitudinal data; mediation effect; moderated mediation model; residual dynamic structural equation modeling; CROSS-SECTIONAL ANALYSES; TIME; BIAS;
D O I
10.1080/10705511.2023.2268293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e., 1-1-1, 2-1-1, and 2-2-1) of intensive longitudinal mediation (ILM) analyses based on DSEM and RDSEM models. Specifically, each ILM model was demonstrated with a simulated example and illustrated with the corresponding annotated Mplus codes. We compared two types of detrending methods in mediation analyses and showed that RDSEM was superior to DSEM because the latter included the timetj variable as a Level 1 predictor. Lastly, we extended ILM analyses based on DSEM and RDSEM to multilevel autoregressive mediation models, cross-classified DSEM, and intensive longitudinal moderated mediation models.
引用
收藏
页码:728 / 741
页数:14
相关论文
共 50 条
  • [21] Modeling reciprocal relations between emotion dysregulation and alcohol use using dynamic structural equation modeling: A micro-longitudinal study
    Weiss, Nicole H.
    Brick, Leslie A.
    Forkus, Shannon R.
    Goldstein, Silvi C.
    Thomas, Emmanuel D.
    Schick, Melissa R.
    Barnett, Nancy P.
    Contractor, Ateka A.
    Sullivan, Tami P.
    ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH, 2022, 46 (08): : 1460 - 1471
  • [22] Longitudinal Relationships Between Depressive Symptom Severity and Phone-Measured Mobility: Dynamic Structural Equation Modeling Study
    Zhang, Yuezhou
    Folarin, Amos A.
    Sun, Shaoxiong
    Cummins, Nicholas
    Vairavan, Srinivasan
    Bendayan, Rebecca
    Ranjan, Yatharth
    Rashid, Zulqarnain
    Conde, Pauline
    Stewart, Callum
    Laiou, Petroula
    Sankesara, Heet
    Matcham, Faith
    White, Katie M.
    Oetzmann, Carolin
    Ivan, Alina
    Lamers, Femke
    Siddi, Sara
    Vilella, Elisabet
    Simblett, Sara
    Rintala, Aki
    Bruce, Stuart
    Mohr, David C.
    Myin-Germeys, Inez
    Wykes, Til
    Maria Haro, Josep
    Penninx, Brenda W. J. H.
    Narayan, Vaibhav A.
    Annas, Peter
    Hotopf, Matthew
    Dobson, Richard J. B.
    JMIR MENTAL HEALTH, 2022, 9 (03):
  • [23] Structural multilevel models for longitudinal mediation analysis: a definition variable approach
    Di Maria, Chiara
    STATISTICAL PAPERS, 2023, 64 (06) : 2161 - 2182
  • [24] Measurement in Intensive Longitudinal Data
    McNeish, Daniel
    Mackinnon, David P.
    Marsch, Lisa A.
    Poldrack, Russell A.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (05) : 807 - 822
  • [25] Opportunities and Issues in Modeling Intensive Longitudinal Data: Learning from the COGITO Project
    West, Stephen G.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2018, 53 (06) : 777 - 781
  • [26] A dynamic trajectory class model for intensive longitudinal categorical outcome
    Lin, Haiqun
    Han, Ling
    Peduzzi, Peter N.
    Murphy, Terrence E.
    Gill, Thomas M.
    Allore, Heather G.
    STATISTICS IN MEDICINE, 2014, 33 (15) : 2645 - 2664
  • [27] Longitudinal associations of movement behaviours with body composition and physical fitness from 4 to 9 years of age: structural equation and mediation analysis with compositional data
    Migueles, Jairo H.
    Nystroem, Christine Delisle
    Dumuid, Dorothea
    Leppanen, Marja H.
    Henriksson, Pontus
    Lof, Marie
    INTERNATIONAL JOURNAL OF BEHAVIORAL NUTRITION AND PHYSICAL ACTIVITY, 2023, 20 (01)
  • [28] A Bayesian Approach to Modeling Variance of Intensive Longitudinal Biomarker Data as a Predictor of Health Outcomes
    Yu, Mingyan
    Wu, Zhenke
    Hicken, Margaret
    Elliott, Michael R.
    STATISTICS IN MEDICINE, 2024, 43 (30) : 5748 - 5764
  • [29] Modeling Intensive Longitudinal Data With Mixtures of Nonparametric Trajectories and Time-Varying Effects
    Dziak, John J.
    Li, Runze
    Tan, Xianming
    Shiffman, Saul
    Shiyko, Mariya P.
    PSYCHOLOGICAL METHODS, 2015, 20 (04) : 444 - 469
  • [30] Poisson Growth Mixture Modeling of Intensive Longitudinal Data: An Application to Smoking Cessation Behavior
    Shiyko, Mariya P.
    Li, Yuelin
    Rindskopf, David
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2012, 19 (01) : 65 - 85