Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels

被引:5
作者
Alshammari, Altaf K. [1 ]
Abd El-Aziz, Tarek Mohamed [2 ,3 ]
Al-Sabi, Ahmed [1 ]
机构
[1] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
[2] Minia Univ, Fac Sci, Zool Dept, El Minia 61519, Egypt
[3] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular & Integrat Physiol, San Antonio, TX 78229 USA
关键词
BPTI-Kunitz polypeptides; CRISPs; dendrotoxins; Kv channels blockers; PLA(2) neurotoxins; presynaptic neurotoxins; SVSPs; snake venom; DORSAL-ROOT GANGLION; AMERICAN RATTLESNAKE VENOM; SITE-DIRECTED MUTAGENESIS; RICH SECRETORY PROTEIN; GREEN MAMBA VENOM; NAJA-ATRA VENOM; K+-CHANNEL; CRYSTAL-STRUCTURE; BETA-BUNGAROTOXIN; ALPHA-DENDROTOXIN;
D O I
10.3390/toxins16010012
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The venom derived from various sources of snakes represents a vast collection of predominantly protein-based toxins that exhibit a wide range of biological actions, including but not limited to inflammation, pain, cytotoxicity, cardiotoxicity, and neurotoxicity. The venom of a particular snake species is composed of several toxins, while the venoms of around 600 venomous snake species collectively encompass a substantial reservoir of pharmacologically intriguing compounds. Despite extensive research efforts, a significant portion of snake venoms remains uncharacterized. Recent findings have demonstrated the potential application of neurotoxins derived from snake venom in selectively targeting voltage-gated potassium channels (Kv). These neurotoxins include BPTI-Kunitz polypeptides, PLA2 neurotoxins, CRISPs, SVSPs, and various others. This study provides a comprehensive analysis of the existing literature on the significance of Kv channels in various tissues, highlighting their crucial role as proteins susceptible to modulation by diverse snake venoms. These toxins have demonstrated potential as valuable pharmacological resources and research tools for investigating the structural and functional characteristics of Kv channels.
引用
收藏
页数:35
相关论文
共 213 条
  • [1] Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving
    Abd El-Aziz, Tarek Mohamed
    Soares, Antonio Garcia
    Stockand, James D.
    [J]. TOXINS, 2019, 11 (10)
  • [2] A Rational Design of a Selective Inhibitor for Kv1.1 Channels Prevalent in Demyelinated Nerves That Improves Their Impaired Axonal Conduction
    Al-Sabi, Ahmed
    Daly, Declan
    Hoefer, Patrick
    Kinsella, Gemma K.
    Metais, Charles
    Pickering, Mark
    Herron, Caroline
    Kaza, Seshu Kumar
    Nolan, Kieran
    Dolly, J. Oliver
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2017, 60 (06) : 2245 - 2256
  • [3] Inhibition of the Nicotinic Acetylcholine Receptors by Cobra Venom α-Neurotoxins: Is There a Perspective in Lung Cancer Treatment?
    Alama, Angela
    Bruzzo, Cristina
    Cavalieri, Zita
    Forlani, Alessandra
    Utkin, Yuri
    Casciano, Ida
    Romani, Massimo
    [J]. PLOS ONE, 2011, 6 (06):
  • [4] Fifty years of inactivation
    Aldrich, RW
    [J]. NATURE, 2001, 411 (6838) : 643 - 644
  • [5] THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels
    Alexander, Stephen P. H.
    Mathie, Alistair
    Peters, John A.
    Veale, Emma L.
    Striessnig, Jorg
    Kelly, Eamonn
    Armstrong, Jane F.
    Faccenda, Elena
    Harding, Simon D.
    Pawson, Adam J.
    Southan, Christopher
    Davies, Jamie A.
    Aldrich, Richard W.
    Attali, Bernard
    Baggetta, Austin M.
    Becirovic, Elvir
    Biel, Martin
    Bill, Roslyn M.
    Catterall, William A.
    Conner, Alex C.
    Davies, Paul
    Delling, Markus
    Di Virgilio, Francesco
    Falzoni, Simonetta
    Fenske, Stefanie
    George, Chandy
    Goldstein, Steve A. N.
    Grissmer, Stephan
    Ha, Kotdaji
    Hammelmann, Verena
    Hanukoglu, Israel
    Jarvis, Mike
    Jensen, AndersA
    Kaczmarek, Leonard K.
    Kellenberger, Stephan
    Kennedy, Charles
    King, Brian
    Kitchen, Philip
    Lynch, Joseph W.
    Perez-Reyes, Edward
    Plant, Leigh D.
    Rash, Lachlan
    Ren, Dejian
    Salman, Mootaz M.
    Sivilotti, Lucia G.
    Smart, Trevor G.
    Snutch, Terrance P.
    Tian, Jinbin
    Trimmer, James S.
    Van den Eynde, Charlotte
    [J]. BRITISH JOURNAL OF PHARMACOLOGY, 2021, 178 : S157 - S245
  • [6] Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents
    Almeida, J. R.
    Resende, L. M.
    Watanabe, R. K.
    Carregari, V. C.
    Huancahuire-Vega, S.
    Caldeira, C. A. da S.
    Coutinho-Neto, A.
    Soares, A. M.
    Vale, N.
    Gomes, P. A. de C.
    Marangoni, S.
    Calderon, L. de A.
    Da Silva, S. L.
    [J]. CURRENT MEDICINAL CHEMISTRY, 2017, 24 (30) : 3254 - 3282
  • [7] Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance
    Almeida, Jose R.
    Palacios, Antonio L. V.
    Patino, Ricardo S. P.
    Mendes, Bruno
    Teixeira, Catia A. S.
    Gomes, Paula
    da Silva, Saulo L.
    [J]. DRUG DEVELOPMENT RESEARCH, 2019, 80 (01) : 68 - 85
  • [8] Amir R, 1999, J NEUROSCI, V19, P8589
  • [9] From Snake Venoms to Therapeutics: A Focus on Natriuretic Peptides
    Ang, Wei Fong
    Koh, Cho Yeow
    Kini, R. Manjunatha
    [J]. PHARMACEUTICALS, 2022, 15 (09)
  • [10] Armstrong Clay M, 2003, Sci STKE, V2003, pre10, DOI 10.1126/stke.2003.188.re10