Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging

被引:3
作者
Cheong, Ryan Chin Taw [1 ]
Jawad, Susan [1 ]
Adams, Ashok [2 ]
Campion, Thomas [2 ]
Lim, Zhe Hong [3 ]
Papachristou, Nikolaos [4 ]
Unadkat, Samit [1 ]
Randhawa, Premjit [1 ]
Joseph, Jonathan [1 ]
Andrews, Peter [1 ]
Taylor, Paul [3 ]
Kunz, Holger [3 ,5 ]
机构
[1] Univ Coll London Hosp NHS Trust, Royal Natl ENT & Eastman Dent Hosp, London, England
[2] Barts Hlth NHS Trust, London, England
[3] Univ London, London, England
[4] Aristotle Univ Thessaloniki, Sch Med, Med Phys & Digital Innovat Lab, Thessaloniki, Greece
[5] Imperial Coll London, Sch Publ Hlth, London, England
关键词
AutoML; Automated machine learning; Paranasal sinus disease; MRI; Artificial intelligence; ARTIFICIAL-INTELLIGENCE;
D O I
10.1007/s00405-023-08424-9
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
PurposeArtificial intelligence (AI) in the form of automated machine learning (AutoML) offers a new potential breakthrough to overcome the barrier of entry for non-technically trained physicians. A Clinical Decision Support System (CDSS) for screening purposes using AutoML could be beneficial to ease the clinical burden in the radiological workflow for paranasal sinus diseases.MethodsThe main target of this work was the usage of automated evaluation of model performance and the feasibility of the Vertex AI image classification model on the Google Cloud AutoML platform to be trained to automatically classify the presence or absence of sinonasal disease. The dataset is a consensus labelled Open Access Series of Imaging Studies (OASIS-3) MRI head dataset by three specialised head and neck consultant radiologists. A total of 1313 unique non-TSE T2w MRI head sessions were used from the OASIS-3 repository.ResultsThe best-performing image classification model achieved a precision of 0.928. Demonstrating the feasibility and high performance of the Vertex AI image classification model to automatically detect the presence or absence of sinonasal disease on MRI.ConclusionAutoML allows for potential deployment to optimise diagnostic radiology workflows and lay the foundation for further AI research in radiology and otolaryngology. The usage of AutoML could serve as a formal requirement for a feasibility study.
引用
收藏
页码:2153 / 2158
页数:6
相关论文
共 23 条
  • [1] [Anonymous], 2021, VERTEX GOOGLE CLOUD
  • [2] Belete SC, 2021, Inform Med Unlocked, V25, DOI [10.1016/j.imu.2021.100669, DOI 10.1016/J.IMU.2021.100669]
  • [3] Bushberg J T., 2011, The Essential Physics of Medical Imaging
  • [4] de Silva K., 2023, INTELLIGENCE BASED M, V7, P100091, DOI DOI 10.1016/J.IBMED.2023.100091
  • [5] Hastie T., 2009, The elements of statistical learning: Data mining, inference, and prediction, DOI DOI 10.1007/978-0-387-84858-7
  • [6] XNAT Central: Open sourcing imaging research data
    Herrick, Rick
    Horton, William
    Olsen, Timothy
    McKay, Michael
    Archie, Kevin A.
    Marcus, Daniel S.
    [J]. NEUROIMAGE, 2016, 124 : 1093 - 1096
  • [7] An artificial intelligence algorithm that differentiates anterior ethmoidal artery location on sinus computed tomography scans
    Huang, J.
    Habib, A-R
    Mendis, D.
    Chong, J.
    Smith, M.
    Duvnjak, M.
    Chiu, C.
    Singh, N.
    Wong, E.
    [J]. JOURNAL OF LARYNGOLOGY AND OTOLOGY, 2020, 134 (01) : 52 - 55
  • [8] Volumetric assessment of paranasal sinus opacification on computed tomography can be automated using a convolutional neural network
    Humphries, Stephen M.
    Centeno, Juan Pablo
    Notary, Aleena M.
    Gerow, Justin
    Cicchetti, Giuseppe
    Katial, Rohit K.
    Beswick, Daniel M.
    Ramakrishnan, Vijay R.
    Alam, Rafeul
    Lynch, David A.
    [J]. INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2020, 10 (11) : 1218 - 1225
  • [9] Hutter F, 2019, SPRING SER CHALLENGE, P1, DOI 10.1007/978-3-030-05318-5
  • [10] Ian Goodfellow A. C., DEEP LEARNING IAN GO