Crystalline Magnetic Anisotropy in High Entropy (Fe, Co, Ni, Cr, Mn)3O4 Oxide Driven by Single-Element Orbital Anisotropy

被引:10
作者
Ke, Wei-En [1 ]
Chen, Jia-Wei [1 ]
Liu, Cheng-En [2 ]
Ku, Yu-Chieh [2 ]
Chang, Chun-Fu [3 ]
Shafer, Padraic [4 ]
Lin, Shi-Jie [5 ]
Chu, Ming-Wen [5 ]
Chen, Yi-Cheng [6 ]
Yeh, Jien-Wei [6 ]
Kuo, Chang-Yang [1 ,7 ]
Chu, Ying-Hao [1 ,6 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan
[3] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
[6] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[7] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
关键词
high entropy oxide; magnetic anisotropy; X-ray absorption spectroscopy; MICROSTRUCTURE; ALLOY;
D O I
10.1002/adfm.202312856
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a single element affects the behavior of the overall material has yet to be explored in depth. In this study, the heteroepitaxy of high entropy (Fe, Co, Ni, Cr, Mn)(3)O-4 films with varying strain states are investigated in magnetic performance. It is discovered that the high entropy oxide thin film with compressive strain exhibits an effect of crystalline magnetic anisotropy. Diverse analyses provide a detailed understanding of high entropy magnetic oxide systems, including X-ray diffraction, reciprocal space mapping, macroscopic magnetic characterization, X-ray absorption spectroscopy (XAS), etc. Notably, the element-specific XAS technique proves effective in uncovering the origin of the crystalline magnetic anisotropy. Due to the substrate-induced epitaxial strain, the e(g) orbitals of Mn3+ form different energy levels, leading to different preferred electron occupancy. The exploration of magnetic properties in epitaxial high entropy oxide film is then raveled. By navigating the complexities introduced by the random atom distribution and intricate magnetic interactions, this study pioneers novel methodologies for probing the core physics of high entropy oxides.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Structural and magnetic properties of nanocrystalline equi-atomic spinel high-entropy oxide (AlCoFeMnNi)3O4 synthesised by microwave assisted co-precipitation technique [J].
Shaw, S. K. ;
Gangwar, A. ;
Sharma, A. ;
Alla, S. K. ;
Kavita, S. ;
Vasundhara, M. ;
Meena, Sher Singh ;
Maiti, P. ;
Prasad, N. K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 878
[32]   A novel Co-free high-entropy oxide (FeNiCrMnMgAl)3O4 as advanced anode material for lithium-ion batteries [J].
Guo, Xu ;
Gu, Ping ;
Wu, Jingfeng ;
Li, Kun ;
Liang, Yongxin ;
Wang, Guiting ;
Zhang, Zhi ;
Guo, Chenfeng .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 978
[33]   The role of Cu element in Fe 9.4 Co 6.7 Ni 6.6 Mn 0.9 V 0.9 Cu 2.4 magnetic high-entropy alloys [J].
Luo, Wenqi ;
Li, Yanguo ;
Zou, Qin ;
Dai, Lifeng ;
Ren, Haibo ;
Jia, He ;
Luo, Yong'an .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 912
[34]   Interplay between alkaline water oxidation temperature, composition and performance of electrospun high-entropy non-equimolar (Cr,Mn,Fe,Co,Ni) oxide electrocatalysts [J].
Triolo, Claudia ;
Moulaee, Kaveh ;
Bellato, Fulvio ;
Pagot, Gioele ;
Ponti, Alessandro ;
Maida, Salvatore ;
Pinna, Nicola ;
Neri, Giovanni ;
Di Noto, Vito ;
Santangelo, Saveria .
JOURNAL OF POWER SOURCES, 2025, 654
[35]   Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Chalcogenide High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J].
Jia Yanggang ;
Shao Xia ;
Cheng Jie ;
Wang Pengpeng ;
Mao Aiqin .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (08)
[36]   Hollow/Mesoporous Spherical La(Cr0.2 Fe0.2Co0.2Ni0.2Mn0.2)O3 High-entropy Oxide Anode toward Ultrafast and Stable Lithium Storage [J].
Bao, Mengfan ;
Chen, Shijie ;
Xie, Hongxiang ;
Zheng, Cuihong ;
Chen, Juan ;
Mao, Aiqin ;
Li, Saisai .
JOURNAL OF MOLECULAR STRUCTURE, 2025, 1340
[37]   Temperature Dependence of the Deformation Behavior of High-Entropy Alloys Co20Cr20Fe20Mn20Ni20, Co19Cr20Fe20Mn20Ni20С1, and Co17Cr20Fe20Mn20Ni20С3. Mechanical Properties and Temperature Dependence of Yield Stress [J].
Astafurova, E. G. ;
Reunova, K. A. ;
Astafurov, S. V. ;
Astapov, D. O. .
PHYSICAL MESOMECHANICS, 2024, 27 (02) :113-123
[38]   Mechano-thermochemical preparation of nanostructured (FeCoNiCr/Mn)3O4 high and medium entropy oxides: Structural, microstructural, magnetic and Li-ion storage characterization [J].
Zhao, Shengxi ;
Rezaei, Asma ;
Fray, Derek J. ;
Kamali, Ali Reza .
CHEMICAL ENGINEERING JOURNAL, 2024, 499
[39]   Development of ferrimagnetic (Mn0.6Cr0.6Co0.6Fe0.6Al0.6)O4 high entropy oxide for photo-Fenton degradation of organic dye [J].
Pradhan, Sanjula ;
Barick, K. C. ;
Anuraag, N. S. ;
Mutta, Vasundhara ;
Prasad, N. K. .
APPLIED SURFACE SCIENCE, 2025, 688
[40]   Nano-TiC reinforced [Cr-Fe4Co4Ni4]Cr3 high- entropy-alloy composite coating fabricated by laser cladding [J].
Shang, Xiaojuan ;
Liu, Qibin ;
Guo, Yaxiong ;
Ding, Kailu ;
Liao, Tianhai ;
Wang, Fangping .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 :2076-2088