Biomass waste-derived porous graphitic carbon for high-performance supercapacitors

被引:34
|
作者
Hegde, Shreeganesh Subraya [1 ]
Bhat, Badekai Ramachandra [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Chem, Catalysis & Mat Chem Lab, Mangalore 575025, Karnataka, India
关键词
Clean energy; Biomass conversion; Waste to energy; Biomass-derived carbon; Energy storage; Supercapacitor; LOW-TEMPERATURE ACTIVATION; OUTSTANDING SUPERCAPACITANCE; CHEMICAL ACTIVATION; LEAVES;
D O I
10.1016/j.est.2023.109818
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Porous carbons possess considerable appeal and are in high demand as materials that can be produced from biomass waste. This study presents the transformation of Tectona grandis (Teak) sawdust into porous carbon materials, referred to as Tectona grandis sawdust-derived porous carbon (TPC), through a cost-effective FeCl3- assisted carbonization process, followed by a KOH activation. TPC samples were synthesized by carbonization at different temperatures (650-850 degrees C) and characterized comprehensively. Structural analysis via X-Ray diffraction (XRD), Raman, and Fourier Transform Infrared Spectroscopy (FTIR) revealed a progressive enhancement in graphitic structure and reduction of functional groups with increasing activation temperature. Field emission scanning electron microscopy (FESEM) displayed the development of intricate hollow tube-like porous networks in TPC-850, with the highest specific surface area (1767.66 m2/g) and pore volume (1.43 cm3/g). Electrochemical investigations showcased the superior performance of TPC-850 as a supercapacitor electrode due to its high graphitic nature, large surface area, and well-structured porosity. The galvanostatic charge-discharge (GCD) measurements exhibited a high specific capacitance of 572 F/g at 0.5 A/g in a 6 M KOH electrolyte. The high-frequency semicircle and low-frequency steeper region in electrochemical impedance spectroscopy (EIS) further indicated reduced resistance and enhanced ion diffusion in TPC-850. Significantly, TPC-850 demonstrated remarkable electrochemical cyclic stability, retaining 95.83 % of its initial capacity even after undergoing 4500 cycles at a scan rate of 500 mV/s. The findings underscore the viability of TPC-850 as a high-performance supercapacitor electrode material, providing insights into harnessing renewable resources for advanced energy solutions. This work highlights the potential of utilizing waste biomass for energy storage applications and demonstrates the feasibility of converting it into efficient porous carbon materials with substantial graphitization and porosity.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor
    Wang, Yuchen
    Liu, Yaoyu
    Huang, Xiongfei
    He, Guanjie
    Yan, Kai
    CHINESE CHEMICAL LETTERS, 2024, 35 (08)
  • [2] Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor
    Yuchen Wang
    Yaoyu Liu
    Xiongfei Huang
    Guanjie He
    Kai Yan
    Chinese Chemical Letters, 2024, 35 (08) : 389 - 393
  • [3] Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors
    Cai, Ning
    Cheng, Hao
    Jin, Han
    Liu, Huayun
    Zhang, Peng
    Wang, Miao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 861
  • [4] Biomass-derived porous carbon electrodes for high-performance supercapacitors
    Yao Sun
    Jianjun Xue
    Shengyang Dong
    Yadi Zhang
    Yufeng An
    Bing Ding
    Tengfei Zhang
    Hui Dou
    Xiaogang Zhang
    Journal of Materials Science, 2020, 55 : 5166 - 5176
  • [5] Biomass-derived porous carbon electrodes for high-performance supercapacitors
    Sun, Yao
    Xue, Jianjun
    Dong, Shengyang
    Zhang, Yadi
    An, Yufeng
    Ding, Bing
    Zhang, Tengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (12) : 5166 - 5176
  • [6] Peanut shell waste derived porous carbon for high-performance supercapacitors
    Liang, Ke
    Chen, Yanli
    Wang, Shengxu
    Wang, Dan
    Wang, Wenchang
    Jia, Shuyong
    Mitsuzakic, Naotoshi
    Chen, Zhidong
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [7] In situ growth of hydrophilic nickel-cobalt layered double hydroxides nanosheets on biomass waste-derived porous carbon for high-performance hybrid supercapacitors
    Yuchen Wang
    Yaoyu Liu
    Zuo Chen
    Man Zhang
    Biying Liu
    Zhenhao Xu
    Kai Yan
    GreenChemicalEngineering, 2022, 3 (01) : 55 - 63
  • [8] In situ growth of hydrophilic nickel-cobalt layered double hydroxides nanosheets on biomass waste-derived porous carbon for high-performance hybrid supercapacitors
    Wang, Yuchen
    Liu, Yaoyu
    Chen, Zuo
    Zhang, Man
    Liu, Biying
    Xu, Zhenhao
    Yan, Kai
    GREEN CHEMICAL ENGINEERING, 2022, 3 (01) : 55 - 63
  • [9] Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature
    Chen, Chong
    Yu, Dengfeng
    Zhao, Gongyuan
    Sun, Lei
    Sun, Yinyong
    Leng, Kunyue
    Yu, Miao
    Sun, Ye
    RSC ADVANCES, 2017, 7 (55): : 34488 - 34496
  • [10] Coffee waste-derived porous carbon based flexible supercapacitors
    Pandey, Keshab
    Jeong, Hae Kyung
    CHEMICAL PHYSICS LETTERS, 2022, 809