scapGNN: A graph neural network-based framework for active pathway and gene module inference from single-cell multi-omics data

被引:5
作者
Han, Xudong [1 ,2 ]
Wang, Bing [1 ,2 ]
Situ, Chenghao [2 ]
Qi, Yaling [2 ]
Zhu, Hui [2 ]
Li, Yan [3 ]
Guo, Xuejiang [1 ,2 ]
机构
[1] Southeast Univ, Sch Med, State Key Lab Reprod Med & Offspring Hlth, Nanjing, Peoples R China
[2] Nanjing Med Univ, Dept Histol & Embryol, State Key Lab Reprod Med & Offspring Hlth, Nanjing, Peoples R China
[3] Nanjing Med Univ, Sir Run Run Hosp, Dept Clin Lab, Nanjing, Peoples R China
基金
国家重点研发计划;
关键词
MICE LACKING; RNA; ACTIVATION; PROTEINS; GLI2;
D O I
10.1371/journal.pbio.3002369
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although advances in single-cell technologies have enabled the characterization of multiple omics profiles in individual cells, extracting functional and mechanistic insights from such information remains a major challenge. Here, we present scapGNN, a graph neural network (GNN)-based framework that creatively transforms sparse single-cell profile data into the stable gene-cell association network for inferring single-cell pathway activity scores and identifying cell phenotype-associated gene modules from single-cell multi-omics data. Systematic benchmarking demonstrated that scapGNN was more accurate, robust, and scalable than state-of-the-art methods in various downstream single-cell analyses such as cell denoising, batch effect removal, cell clustering, cell trajectory inference, and pathway or gene module identification. scapGNN was developed as a systematic R package that can be flexibly extended and enhanced for existing analysis processes. It provides a new analytical platform for studying single cells at the pathway and network levels. This study presents scapGNN, a single-cell data analysis toolkit that can quantify association networks in sparse single-cell profiles to integrate multi-omics data, calculate pathway activity scores, and identify cell phenotype-associated gene modules at single-cell resolution. Its rich functionality and visualization offer a comprehensive view of single-cell multi-omics data.
引用
收藏
页数:36
相关论文
共 93 条
  • [1] Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/nmeth.4463, 10.1038/NMETH.4463]
  • [2] CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice
    Akter, Most Sumona
    Hada, Masashi
    Shikata, Daiki
    Watanabe, Gen
    Ogura, Atsuo
    Matoba, Shogo
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Modularity in Biological Networks
    Alcala-Corona, Sergio Antonio
    Sandoval-Motta, Santiago
    Espinal-Enriquez, Jesus
    Hernandez-Lemus, Enrique
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [4] [Anonymous], 2016, Variational graph auto-encoders
  • [5] MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data
    Argelaguet, Ricard
    Arnol, Damien
    Bredikhin, Danila
    Deloro, Yonatan
    Velten, Britta
    Marioni, John C.
    Stegle, Oliver
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [6] Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    Barbie, David A.
    Tamayo, Pablo
    Boehm, Jesse S.
    Kim, So Young
    Moody, Susan E.
    Dunn, Ian F.
    Schinzel, Anna C.
    Sandy, Peter
    Meylan, Etienne
    Scholl, Claudia
    Froehling, Stefan
    Chan, Edmond M.
    Sos, Martin L.
    Michel, Kathrin
    Mermel, Craig
    Silver, Serena J.
    Weir, Barbara A.
    Reiling, Jan H.
    Sheng, Qing
    Gupta, Piyush B.
    Wadlow, Raymond C.
    Le, Hanh
    Hoersch, Sebastian
    Wittner, Ben S.
    Ramaswamy, Sridhar
    Livingston, David M.
    Sabatini, David M.
    Meyerson, Matthew
    Thomas, Roman K.
    Lander, Eric S.
    Mesirov, Jill P.
    Root, David E.
    Gilliland, D. Gary
    Jacks, Tyler
    Hahn, William C.
    [J]. NATURE, 2009, 462 (7269) : 108 - U122
  • [7] Gene Ontology Consortium: going forward
    Blake, J. A.
    Christie, K. R.
    Dolan, M. E.
    Drabkin, H. J.
    Hill, D. P.
    Ni, L.
    Sitnikov, D.
    Burgess, S.
    Buza, T.
    Gresham, C.
    McCarthy, F.
    Pillai, L.
    Wang, H.
    Carbon, S.
    Dietze, H.
    Lewis, S. E.
    Mungall, C. J.
    Munoz-Torres, M. C.
    Feuermann, M.
    Gaudet, P.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Fey, P.
    Mi, H.
    Thomas, P. D.
    Muruganujan, A.
    Poudel, S.
    Hu, J. C.
    Aleksander, S. A.
    McIntosh, B. K.
    Renfro, D. P.
    Siegele, D. A.
    Attrill, H.
    Brown, N. H.
    Tweedie, S.
    Lomax, J.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Lovering, R. C.
    Talmud, P. J.
    Humphries, S. E.
    Denny, P.
    Campbell, N. H.
    Foulger, R. E.
    Chibucos, M. C.
    Giglio, M. Gwinn
    Chang, H. Y.
    Finn, R.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D1049 - D1056
  • [8] BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process
    Boukouvalas, Alexis
    Hensman, James
    Rattray, Magnus
    [J]. GENOME BIOLOGY, 2018, 19
  • [9] Brohmann H, 1997, J BIOL CHEM, V272, P10327, DOI 10.1074/jbc.272.15.10327
  • [10] METHOD FOR COMBINING NON-INDEPENDENT, ONE-SIDED TESTS OF SIGNIFICANCE
    BROWN, MB
    [J]. BIOMETRICS, 1975, 31 (04) : 987 - 992