Recent Advances in Machine Learning for Network Automation in the O-RAN

被引:10
作者
Hamdan, Mutasem Q. [1 ]
Lee, Haeyoung [2 ]
Triantafyllopoulou, Dionysia [3 ]
Borralho, Ruben [4 ]
Kose, Abdulkadir [5 ]
Amiri, Esmaeil [4 ]
Mulvey, David [4 ]
Yu, Wenjuan [6 ]
Zitouni, Rafik [4 ]
Pozza, Riccardo [4 ]
Hunt, Bernie [4 ]
Bagheri, Hamidreza [7 ]
Foh, Chuan Heng [4 ]
Heliot, Fabien [4 ]
Chen, Gaojie [4 ]
Xiao, Pei [4 ]
Wang, Ning [4 ]
Tafazolli, Rahim [4 ]
机构
[1] Samsung Elect R&D Inst, Staines TW18 4QE, England
[2] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield AL10 9AB, England
[3] Tech Univ Chemnitz, Professorship Commun Engn, D-09111 Chemnitz, Germany
[4] Univ Surrey, Inst Commun Syst, 5GIC & 6GIC, Guildford GU2 7XH, England
[5] Abdullah Gul Univ, Dept Comp Engn, TR-38080 Kayseri, Turkiye
[6] Univ Lancaster, Sch Comp & Commun, InfoLab21, Lancaster LA1 4WA, England
[7] York St John Univ, Sch Sci Technol & Hlth, York YO31 7EX, England
基金
英国工程与自然科学研究理事会;
关键词
open radio access networks; machine learning; artificial intelligence; INTELLIGENCE; MOBILE;
D O I
10.3390/s23218792
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit.
引用
收藏
页数:35
相关论文
共 86 条
[1]  
3gpp, about us
[2]  
3GPP, 2017, Study on CU-DU Lower Layer Split for NR
[3]   Toward Next Generation Open Radio Access Networks: What O-RAN Can and Cannot Do! [J].
Abdalla, Aly S. S. ;
Upadhyaya, Pratheek S. S. ;
Shah, Vijay K. K. ;
Marojevic, Vuk .
IEEE NETWORK, 2022, 36 (06) :206-213
[4]   Elastic O-RAN Slicing for Industrial Monitoring and Control: A Distributed Matching Game and Deep Reinforcement Learning Approach [J].
Abedin, Sarder Fakhrul ;
Mahmood, Aamir ;
Tran, Nguyen H. ;
Han, Zhu ;
Gidlund, Mikael .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) :10808-10822
[5]   Exploiting NOMA for Radio Resource Efficient Traffic Steering Use-case in O-RAN [J].
Akhtar, Muhammad Waseem ;
Mahmood, Aamir ;
Abedin, Sarder Fakhrul ;
Hassan, Syed Ali ;
Gidlund, Mikael .
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, :5771-5776
[6]  
Akrout M., 2023, arXiv
[7]   Domain Generalization in Machine Learning Models for Wireless Communications: Concepts, State-of-the-Art, and Open Issues [J].
Akrout, Mohamed ;
Feriani, Amal ;
Bellili, Faouzi ;
Mezghani, Amine ;
Hossain, Ekram .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (04) :3014-3037
[8]  
Amiri E., 2023, IEEE Wirel. Commun. Lett
[9]  
Amiri E., 2023, IEEE Trans. Netw. Serv. Manag
[10]   Optimizing Virtual Network Function Splitting in Open-RAN Environments [J].
Amiri, Esmaeil ;
Wang, Ning ;
Shojafar, Mohammad ;
Tafazolli, Rahim .
PROCEEDINGS OF THE 2022 47TH IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2022), 2022, :422-429