Corrosion behavior of SiC and FeCrC reinforced AISI 304 components fabricated by plasma wire arc additive manufacturing (P-WAAM)

被引:0
|
作者
Bayar, Ismail [1 ,3 ]
Oteyaka, Mustafa Ozgur
Cakir, Ersin [2 ]
Ulutan, Mustafa [2 ]
机构
[1] Batman Univ, Dept Mech Engn, Batman, Turkiye
[2] Eskisehir Osmangazi Univ, Dept Mech Engn, Eskisehir, Turkiye
[3] Batman Univ, Dept Mech Engn, TR-72060 Batman, Turkiye
关键词
AISI; 304; stainless steel; corrosion; microstructure; plasma wire arc additive manufacturing; 316L STAINLESS-STEEL; PITTING CORROSION; MICROSTRUCTURE; 304-STAINLESS-STEEL; PARAMETERS; DEPOSITION; RESISTANCE; FEED;
D O I
10.1177/09544054231205120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) has recently been widely used to produce different materials. The present study fabricated AISI 304 stainless steel parts using the Plasma-WAAM (P-WAAM) method. FeCrC and SiC microparticles were added to enhance the corrosion properties of additive-manufactured (AM) AISI 304. The corrosion behaviors of the samples were studied in the 3.5 wt.% NaCl solution using electrochemical techniques. The results show that additively manufactured AISI 304 sample microstructure consisted of austenitic and delta-ferrite phases in the form of lathy and skeletal. The electrochemical results showed that the 304-WAAM sample open circuit potential (E-ocp) was -180 mV and slightly more cathodic than the 304-NT sample. The E-ocp decreased by 69 and 145 mV in the 304-FeCr and 304-SiC samples, respectively, compared to the 304-WAAM sample. The polarization resistance of the WAAM sample was triple compared to the reinforced with microparticles WAAM sample due to lower galvanic activity. In addition, the corrosion resistance was investigated by impedance technique, and it was found that the WAAM 304 without reinforcement had a better protective film with a larger semi-circle capacitive loop.
引用
收藏
页码:1648 / 1657
页数:10
相关论文
共 50 条
  • [21] Fatigue Behavior of Austenitic Stainless Steel 347 Fabricated via Wire Arc Additive Manufacturing
    Duraisamy, R.
    Kumar, S. Mohan
    Kannan, A. Rajesh
    Shanmugam, N. Siva
    Sankaranarayanasamy, K.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6844 - 6850
  • [22] Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing
    Kannan, A. Rajesh
    Kumar, S. Mohan
    Pramod, R.
    Shanmugam, N. Siva
    Vishnukumar, M.
    Channabasavanna, S. G.
    MATERIALS LETTERS, 2022, 308
  • [23] Effects of Heat Input on Morphology of Thin-Wall Components Fabricated by Wire and Arc Additive Manufacturing
    Jiang, Fengchun
    Sun, Laibo
    Huang, Ruisheng
    Jiang, Hui
    Bai, Guangyong
    Qi, Xiaopeng
    Liu, Chuanming
    Su, Yan
    Guo, Chunhuan
    Wang, Jiandong
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (04)
  • [24] Effect of heat treatment on microstructure and corrosion behavior of Al-Cu alloy fabricated by wire arc additive manufacturing
    Ren, Guochun
    Zheng, Yang
    Xiong, Ruize
    Zhao, Cenya
    Wang, Tianqi
    Li, Liangyu
    MATERIALS CHARACTERIZATION, 2024, 218
  • [25] Microstructure and corrosion resistance properties of 5356 aluminum alloy fabricated by wire and arc additive manufacturing
    Liang, Jingheng
    Zheng, Ziqin
    Xu, Zhibao
    Wang, Shuai
    Han, Han
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2025, 53 (02): : 115 - 124
  • [26] Effect of trace Sc addition on microstructure, mechanical and stress corrosion cracking properties of Al-Mg alloys fabricated by Wire Arc Additive Manufacturing (WAAM)
    Gao, Chuanyou
    Xie, Hu
    Huang, Hongfeng
    Chen, Jiqiang
    Hu, Lei
    Guo, Lijie
    Yin, Xiaohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1021
  • [27] Effects of linear heat input on microstructure and corrosion behavior of an austenitic stainless steel processed by wire arc additive manufacturing
    Wen, DongXu
    Long, Ping
    Li, JianJun
    Huang, Liang
    Zheng, ZhiZhen
    VACUUM, 2020, 173
  • [28] Examination of microstructure properties of AISI 316L stainless steel fabricated by wire arc additive manufacturing
    Vinoth, V.
    Sathiyamurthy, S.
    Natarajan, U.
    Venkatkumar, D.
    Prabhakaran, J.
    Prakash, K. Sanjeevi
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 702 - 706
  • [29] Understanding the microstructural evolution and fatigue behavior of aluminum 2319 fabricated by wire arc additive manufacturing
    Kannan, A. Rajesh
    Pramod, R.
    Prakash, K. Sanjeevi
    Shanmugam, N. Siva
    Yoon, Jonghun
    Oliveira, J. P.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2024, 24 (02)
  • [30] Fatigue Behavior of Austenitic Stainless Steel 347 Fabricated via Wire Arc Additive Manufacturing
    R. Duraisamy
    S. Mohan Kumar
    A. Rajesh Kannan
    N. Siva Shanmugam
    K. Sankaranarayanasamy
    Journal of Materials Engineering and Performance, 2021, 30 : 6844 - 6850