epiAneufinder identifies copy number alterations from single-cell ATAC-seq data

被引:9
|
作者
Ramakrishnan, Akshaya [1 ]
Symeonidi, Aikaterini [1 ,2 ]
Hanel, Patrick [1 ,2 ]
Schmid, Katharina T. [2 ]
Richter, Maria L. [2 ]
Schubert, Michael [3 ]
Colome-Tatche, Maria [1 ,2 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Ludwig Maximilians Univ Munchen, Fac Med, Biomed Ctr BMC, Physiol Chem, Martinsried, Germany
[3] Netherlands Canc Inst, Oncode Inst, Div Cell Biol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
关键词
ANEUPLOIDY PARADOX; CHROMATIN;
D O I
10.1038/s41467-023-41076-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell open chromatin profiling via scATAC-seq has become a mainstream measurement of open chromatin in single-cells. Here we present epiAneufinder, an algorithm that exploits the read count information from scATAC-seq data to extract genome-wide copy number alterations (CNAs) for individual cells, allowing the study of CNA heterogeneity present in a sample at the single-cell level. Using different cancer scATAC-seq datasets, we show that epiAneufinder can identify intratumor clonal heterogeneity in populations of single cells based on their CNA profiles. We demonstrate that these profiles are concordant with the ones inferred from single-cell whole genome sequencing data for the same samples. EpiAneufinder allows the inference of single-cell CNA information from scATAC-seq data, without the need of additional experiments, unlocking a layer of genomic variation which is otherwise unexplored. 'Here the authors present epiAneufinder, an algorithm for the identification of single-cell copy number alterations from scATAC-seq data, and explore the clonal heterogeneity in cell populations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Modeling fragment counts improves single-cell ATAC-seq analysis
    Laura D. Martens
    David S. Fischer
    Vicente A. Yépez
    Fabian J. Theis
    Julien Gagneur
    Nature Methods, 2024, 21 : 28 - 31
  • [32] Classifying cells with Scasat, a single-cell ATAC-seq analysis tool
    Baker, Syed Murtuza
    Rogerson, Connor
    Hayes, Andrew
    Sharrocks, Andrew D.
    Rattray, Magnus
    NUCLEIC ACIDS RESEARCH, 2019, 47 (02)
  • [33] Modeling fragment counts improves single-cell ATAC-seq analysis
    Martens, Laura D.
    Fischer, David S.
    Yepez, Vicente A.
    Theis, Fabian J.
    Gagneur, Julien
    NATURE METHODS, 2024, 21 (01) : 28 - 31
  • [34] Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
    Lee M.Y.Y.
    Kaestner K.H.
    Li M.
    Genome Biology, 24 (1)
  • [35] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [36] Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
    Raevskiy, Mikhail
    Yanvarev, Vladislav
    Jung, Sascha
    Del Sol, Antonio
    Medvedeva, Yulia A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [37] Simultaneous dimensionality reduction and integration for single-cell ATAC-seq data using deep learning
    Kopp, Wolfgang
    Akalin, Altuna
    Ohler, Uwe
    NATURE MACHINE INTELLIGENCE, 2022, 4 (02) : 162 - +
  • [38] Simultaneous dimensionality reduction and integration for single-cell ATAC-seq data using deep learning
    Wolfgang Kopp
    Altuna Akalin
    Uwe Ohler
    Nature Machine Intelligence, 2022, 4 : 162 - 168
  • [39] Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data
    Li, Yang
    Ma, Anjun
    Wang, Yizhong
    Guo, Qi
    Wang, Cankun
    Fu, Hongjun
    Liu, Bingqiang
    Ma, Qin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [40] Scalable and unbiased sequence-informed embedding of single-cell ATAC-seq data with CellSpace
    Tayyebi, Zakieh
    Pine, Allison R.
    Leslie, Christina S.
    NATURE METHODS, 2024, 21 (06) : 1014 - 1022